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Introduction and Background:

Please note that this section of the report remains largely the same as reported in
previous years. Periodic mass screening of asymptomatic women is rapidly gaining approval
and acceptance, and the population segment recommended for screening is increasing due to
both longer life expectancy as well as earlier recommended age for initial examination [1-3].
The large variability in a number of important aspects related to mammography, as practiced
in the U.S,, resulted in the enactment of the Mammography Quality Standards Act, which
mandates accreditation of each program (facility, technical, and professional) [4,5].
Shortages of expert mammographers in many locations, combined with the desire to make it
convenient for the patient to undergo the procedure, suggest that there may be a need for
high-quality tele-mammography systems that enable a distributed acquisition-centralized
expert review type solution to the problem, particularly in underserved areas [6, 7]. The
relatively high recall rates (5-15%) of screened women to supplement information that was
not ascertained during the initial visit (e.g. magnification views, ultrasound) also make it
desirable to enable physician “monitoring” and “management” of remote underserved
locations so that some patient-management decisions can be made while the patient remains
in the clinic [8-11]. In addition, a technologist who observes a possible abnormality during
the performance of the study could benefit from the ability to communicate her/his suspicion,
and an expert mammographer could review the specific case, together with the technologist’s
observation, resulting in an improved and perhaps a more timely diagnosis. Current practices
result in increased patient anxiety and added practice complexity and cost. Early attempts to
develop and implement a practical tele-mammography solution to this problem failed due to
several significant technical problems associated with acquisition, transmission,
management, and display of the images and other related information [12-14]. Many of these
technical issues have been resolved in recent years, but some remain [14-18]. Although an
adequate communication infrastructure for high-quality tele-mammography is available
within some urban regions, the fact remains that where it may be needed most (i.e. remote,
non-urban locations), enabling (two-way) communication systems remain limited to lower
level communication capabilities. Other communication technologies, such as satellites, are
being evaluated for this purpose, but it is not likely that these will displace lower level
communication technologies in many underserved areas for quite some time [19-23]. Hence,
the problem of cost effective, timely remote patient monitoring and management in many
underserved areas is not a simple one.

As a part of this project, we are assembling and evaluating a unique tele-
mammography system that enables improved communication between remote sites where
physicians are not always available during the mammographic acquisition process and a
central location where experts can review the acquired images shortly after acquisition and
assess whether or not additional procedures (e.g., spot compression views) are needed [24,
25]. The system we are assembling and testing is based on prior preliminary experience
acquired in our group during ten years of research in this general area. It includes the use of
a common carrier for communication (Plain Old Telephone System, POTS) and other “low
level” communication capabilities, wavelet-based image compression for data reduction, and
the optional incorporation of other text information, location information, and CAD results
into the transmitted information. The main goal is to assess in a step-by-step approach
whether the use of such a system could substantially reduce recall rates in the remote sites.
Other objectives regarding ways to improve communication between the technologist at the




remote site and a radiologist at the central site, as well as creating an environment for “more
active” participation of the technologist in the diagnostic process, are also being explored.

Body:

Since the initiation of the project on September 1, 2000, we have been progressing
methodologically step by step on the tasks listed in the Statement of Work (page 5 of the
proposal), as originally submitted. As will be explained in the body of this annual report, our
initial findings resulted in the addition of several technical tasks that were successfully
performed in order to maximize our ability to learn about the applications being investigated
in this project. During year four of the project, work was performed in three different areas
listed under Task 1 (Redesign and Assemble System), Task 3 (Clinical System’s Evaluation),
and Task 4 (Evaluation of CAD Results) in the original proposal. We have also begun
planning for Task 5. As we explain in the body of the report, a significant new addition
(capability) was added to the system as a result of our operational and preliminary clinically
simulated evaluation tasks. This required a substantial technical effort and ultimately resulted
in a major software upgrade of the system. The task was recently completed and the system
has been tested using the new software. We recently requested a one year no-cost extension
to the project to complete all tasks, including Task 5 (High Volume Demonstration).
Following the recommendations of the reviewer of our latest annual report, we focus here on
work performed during the period in question (September 1, 2003 to August 31, 2004).

Under Task 1, we performed the following:

Since our last progress report, and based on the results from our observer performance
studies, we decided to incorporate into the system in an integrated, easy to use fashion: 1)
text messaging (namely, two way ‘“chat” between the remote technologist and central
radiologists), 2) marking of suspicious locations (namely, the technologist marks suspicious
regions on an image overlay), 3) CAD results, and 4) prior mammography reports. The
reason for the additional tools (in particular item #2) is to provide the radiologist at the
central location with all of the tools to enable better assessment of the examinations being
sent for review (obviously, this is all done in addition to the actual mammographic images).
Therefore, these technical tasks were planned for and implemented before we performed a
“high-volume” simulated study (Task #5 in our original proposal). The driving force behind
this additional work was the result of clear indications from our radiologists during a prior
observer performance study that any additional information we can provide during the
remote review of examinations would be of great help. Since the technologists at the remote
sites send examinations that they already believe would require a follow-up procedure, it was
felt that it would be important to communicate the specific (known) location of the
“suspected” region on the images which the technologists identified as the reason for sending
the case for a central review. The interfacing to enable these capabilities required substantial
modifications of our software (in particular item #2), and we decided to perform an
additional retrospective observer performance study to assess the ability to integrate this
information in an easy to use manner, and evaluate potential (projected) reduction in recall
rates when we add this function to the communication capabilities of the system.



We completed the development and technical testing of the new software (a major
upgrade was installed and tested during the third week of May, 2004). Technical testing of
the system was completed and an observer performance study was carried out (see Task 3).

Under Task 3, we performed the following:

1) Retrospective observer performance studies to assess performance without and with
CAD results and without and with the location of suspected regions:

After the software upgrade was completed and tested (Task #1), a study management
software routine for the retrospective reading experiment was written and tested during the
third and fourth weeks of May, 2004. All data entry for a retrospective observer performance
study (including selecting cases and related information) was completed in early June, 2004.

A synopsis of the three observer performance studies in this area follows: Registered
mammography technolog1sts from three remote imaging sites transmitted 245 screening
mammography exams to a central site (radiologists), which they (the technologlsts) believed
needed additional procedures. Four data components are transmitted from the remote site:
(1) image data - current exam mammography films digitized at 50 pm pixel dimensions; (2)
text and graphic communication between the technologist and the radiologist via a “chat”
box in which the technologist can describe and mark suspicious regions on integrated generic
images; (3) prior patient reports when available; and (4) computer aided detection (CAD)
results. At the central site images are displayed on a workstation consisting of three high-
resolution, portrait monitors. The i image data with the CAD results overlaid are displayed on
two monitors and the chat box and prior reports on the third monitor. Seven radiologists
reviewed and rated the exams on the tele-mammography workstation and indicated: (1) if
additional procedures were recommended, (2) when appropriate, which breast was involved,
and (3) when appropriate, the specific recommended procedures. The performance of the
" radiologists on the workstation was compared with the clinical interpretation of the same
examinations in three studies. Study 1 had two interpretation modes: (1) images only and (2)
images and technologist’s text message. Study 2 had two modes: (1) images and
technologist’s text message and (2) images, text message, and prior report. Study 3 had three
modes: (1) images, technologist’s text message, and prior report; (2) images, text message,
prior report, and technologist’s graphic location marks; and (3) images, text message, prior
report, graphic marks (location), and CAD results. We are currently in the process of
completing the analyses of the third study. Amongst other analyses, we will compute the
potential improvements in terms of projected reduction in recall rates at the remote sites.

Preliminary Results: Technologists were able to identify suspicious examinations
that may require additional procedures, but their “recommended” examinations amounted to
a substantially larger number compared with that of a clinical interpretation by a radiologist.
The 245 screening exams were successfully transmitted, processed, reviewed, and rated. The
percent of exams recalled for recommended additional procedures (termed “recall”) during
the actual clinical interpretation for Studies 1 (n = 130), 2 (n = 99, a subset of Study 1), and 3
(n=115) were 39.2%, 38.4%, and 42.2%, respectively. Tele-mammography Study 1; modes
1 and 2 had mean recall rates of 73.3% (+/- 17.9) and 82.5% (+/- 16.2), respectively, and
mean agreements of 51.7% (+/- 5.5) and 48.7% (+/- 6.3), respectively. Study 2; modes 1 and
2 had mean recall rates of 79.6% (+/- 12.3) and 77.5% (+/- 13.8), respectively, and mean
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agreements of 52.3% (+/- 6.7) and 52.8% (+/- 7.0), respectively. Study 3; modes 1, 2 and 3
had mean recall rates of 72.3% (+/- 9.3), 72.3% (+/- 9.3), and 72.7% (+/- 9.2), respectively,
and mean agreements of 57.4% (+/- 4.6), 57.1% (+/- 3.9), and 56.7% (+/- 3.9), respectively.
However, it should be remembered that without radiologists’ reviews 100 percent of these
women would have been recommended for additional procedures by the technologists;
hence, approximately 30 percent reduction could be achieved utilizing our proposed
approach. These results are preliminary and we hope to complete our analyses before
September 30, 2004.

2) Clinical assessment of traditional performance levels:

A substantial fraction of the effort during the last year was carried out under Task 3.
We are “breaking ground” in several respects that include but are not limited to the
involvement of technologists in the decision-making process (namely, which cases to send
over to the central site and why?), and possibly the increased “reliance” of the radiologists on
the technologists’ judgments. As a part of this investigation we assessed our clinical
performance levels in the traditional practice (without tele-mammography).

We analyzed data available in our databases concerning patient distributions and
process-related information. This includes the recall rate by physician, site, type, and reason
for recall. We also reviewed records concerning the cycle time from the initial examination
to a definitive diagnosis for cases that were not being recalled, as well as cases that were.
This effort constitutes the reference information for comparison purposes. One of the more
interesting (and relevant) findings in this regard is the long delays in scheduling (average >
20 days) between the patient’s call for an appointment due to recall and the actual date of
examination, underlying the potential benefit of the use of tele-mammography to reduce
recall rates. During the last year, we completed a large study to assess the effect of the
introduction of CAD into our clinical environment and the relationship between recall rates
and detection rates for our ten highest volume radiologists. One of the issues that was raised
in our group was the issue of correlations (if any) between the recall and detection rates of
radiologists. This is an important point since there is a significant pressure on radiologists to
reduce their individual recall rates to below ten percent. While we recognize the tremendous
value of reducing recall rates without a substantial degradation in detection rates (sensitivity),
the question arises as to whether or not higher recall rates are also generally associated with
higher detection rates. These studies involved the reviews of over 115,000 records and
resulted in important observations that were published in JNCI and Cancer (see publications
list). We strongly believe that the use of CAD will ultimately be used as an integral part of
the diagnostic process and some of our efforts to develop and improve CAD schemes were
supported (only to a very minimal level) by this project. Several important observations were
made, all of which were published (see publications list).

Under Task 4, Evaluations of CAD Results:

We continue to improve our own CAD schemes, and as we progress in this area we
also change the performance level of the scheme used in the tele-mammography system.
Most of the CAD development efforts are performed under separate projects, but limited
effort related to the assessment of performance is relevant to this project (see publications
list). As of a recent progress review and planning meeting (August 24, 2004), we determined
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and fixed the operating point of the scheme (sensitivity and false positive rate) to be used in
the system during the demonstration task (Task #5).

Under Task 5, Clinically simulated almost real time transmission and reporting:

There is only one significant effort under this category; namely, the performance of
an “almost real time - high volume” demonstration of the transmission of suspected cases at
the remote sites and a clinically simulated response from the central site. This task is planned
for execution during our proposed no cost extension year, since we needed to upgrade the
system and perform two additional observer performance studies. We already had two
planning meetings regarding this task and we antlclpate that once the management software
for the study is completed it will be carried out in an “almost real time” simulated clinical
environment. During this study, we anticipate that each site will transmit approximately 6-12
studies per day to the central site. We continue to test the system’s and radiologists’ ability to
handle the workflow and review of this reasonably high volume of cases.

Key (Research) Accomplishments:

During the last year of the project, we have been progressing according to the original
plan and addressed a large number of the technical tasks and operational issues associated
with the design, implementation, technical, and clinically simulated testing of the multi-site
tele-mammography system. The key accomplishments for the last year were:

e We carried out a comprehensive review of the performance of our radiologists in
terms of performance without and with CAD, as well as the relationship between
recall rates and detection rates.

e We upgraded the system with a major software revision in response to radiologists’
preferences during the performance of the task the tele-mammography system was
designed for.

e We successfully and reliably transmitted approximately 530 cases from three remote
sites to the central site (our total to date exceeds 2000 cases).

e We successfully reviewed a large number of cases on the Workstatlon and generated a
clinically simulated response to the remote sites.

o We completed two observer performance studies to assess agreement levels between
the technologists and radiologists on suspicious cases. The analyses of these studies
are currently being performed and will be reported in the 2005 SPIE meeting.

e We are increasing the communication level between technologists and physicians in
regard to decision-making processes, and we are engaged in discussions concerning a
more extensive use of technologists as physician extenders in several areas.

e We demonstrated that in principle one can achieve a significant reduction in actual
recall rates for a second visit, albeit at this time, at the cost of a substantial increase in
the number of women who would receive additional procedures during their initial
screening visit. We continue to focus on ways to reduce this number.




Reportable Outcomes:

The nature of this project is such that some of the technical work performed to date
does not result in a large number of significant reportable outcomes. However, as we
developed and tested the system, several reportable tasks have been performed. For example,
our comprehensive assessment of the actual performance in our clinical operations as it
relates to the use of CAD and to recall and detection rates was reported. These efforts have
led to important developments and observations that may have a significant impact on this
field. Therefore, several of our new publications which had not been reported in our last
progress report, are listed below. Since our last report these include:

1. Leader JK, Sumkin JH, Ganott MA, Hakim C, Hardesty L, Shah R, Wallace L, Klym
A, Drescher JM, Maitz GS, Gur D. Subjective assessment of high-level image
compression of digitized mammograms. Proceedings of SPIE Medical Imaging
2004: Image Perception, Observer Performance, and Technology Assessment, San
Diego, CA, February 2004, 5372:415-422.

2. Zheng B, Hardesty LA, Poller WR, Sumkin JH, Golla S. Mammography with
computer-aided detection: reproducibility assessment — initial experience, Radiology
2003; 228:58-62.

3. Zheng B, Good WF, Armfield DR, Cohen C, Hertzberg T, Sumkin JH, Gur D.
Performance change of mammographic CAD schemes optimized with most-recent
and prior image database, Acad Radiol 2003; 10:283-288.

4. Chang YH, Good WF, Leader JK, Wang XH, Zheng B, Hardesty LA, Hakim CM,
Gur D, Integrated density of a lesion: a quantitative, mammographically derived,
invariable measure, Med Phys 2003; 30:1805-1811.

5. Zheng B, Leader JK, Abrams G, Shindel B, Catullo V, Good WF, Gur D. Computer-
aided detection schemes: The effect of limiting the number of cued regions in each
case, AJR 2004; 182:579-583.

6. Gur D, Sumkin JH, Rockette HE, Ganott M, Hakim CM, Hardesty L, Poller WR,
Shah R, Wallace L. Changes in breast cancer detection and mammography recall
rates after the introduction of a computer-aided detection system, JNCI 2004; 96:185-
190.

7. Gur D, Sumkin JH, Hardesty LA, Clearfield RJ, Cohen CS, Ganott MA, Haklm CM,
Harris KM, Poller WR, Shah R, Wallace LP, Rockette HE. Recall and detection rates
in screening mammography. A review of clinical experience — implications for
practice guidelines. Cancer 2004; 100(8):1590-1594.

Conclusions:

There are several technical, clinical, and assessment tasks listed in the Statement of
Work of this project. During the first four years, we undertook a large number of technical
and application-based tasks associated with the design, implementation, and preliminary
evaluation of a multi-site tele-mammography system. We overcame many of the technical
problems and assembled a multi-site system that exceeds several of the performance goals
we originally proposed. The system has been undergoing a comprehensive step-by-step
evaluation (and major upgrades as deemed appropriate). Our main observation to date is that
the general concept was verified and the actual implementation resulted in an appreciation
for the importance of the “comfort level” of the team (physicians and technologists) in



operating and using such a system for the stated purpose. Most important perhaps is the
demonstration that in principle, one could achieve a significant reduction in actual recall rates
for a second visit. At this time, it can be done at the cost of a substantial increase in the
number of women who would receive additional procedures (e.g., views) during their initial
screening visit, and we currently focus on investigating different ways to reduce this number.
In addition, we have improved substantially our understanding of several extremely
important issues related to screening mammography, in general, and the use of CAD, in
particular. These may have far reaching implications on this field.

So What?

The main goal of this project is to evaluate how the use of an “almost real-time” tele-
mammography system (with or without the use of CAD results and other relevant
information) may impact the diagnostic process in terms of complete cycle time and patients’
recall rate. Task 5 (a high volume clinically simulated study) is planned as the last major
effort for this project. Success of this project will enable a comprehensive demonstration of
different ways to increase communication between remote (and potentially underserved) sites
and a central site. Our hope is that by using this approach, one may be able to provide better,
more timely and cost-effective service at these sites, and in the process substantially reduce
actual recall rates in these remote facilities. Despite significant advances in our
understanding of the many issues and alternatives surrounding the “optimal” screening
mammography, many of our current clinical practice guidelines are based on limited
subjective assessments and anecdotal experiences, and a significant fraction is related to
operational matters in busy urban environments that are staffed by experienced radiologists.
The area of optimizing remote, underserved practices has been studied only in a cursory
manner. Our project is but one attempt to improve our understanding of the technical,
operational, and clinical issues facing these facilities and implementing technology-based
solutions that may help them provide a better service to the populations they serve.

Background References:

1. S Pelikan, M Moskowitz, “Effects of lead time length bias, and false-negative
assurance on screening for breast cancer,” Cancer 71, 1998-2005 (1993).

2. L Tabar, G Fagerberg, HH Chen, SW Duffy, CR Smart, A Gad, RA Smith, “Efficacy
of breast cancer screening by age: New results from the Swedish Two-Country Trial,”
Cancer 75, 2507-2517 (1995).

3. F Houn, ML Brown, “Current practice of screening mammography in the United
States: Data from the national survey of mammography facilities,” Radiology 190,
209-215 (1994).

4. CA Beam, PM Layde, DC Sullivan, “Variability in the interpretation of screening
mammograms by US radiologists,” Arch Intern Med 156, 209-213 (1996).

5. Food and Drug . Administration, “Mammography facilities: requirements for
accrediting bodies and quality standards and certification requirements-interim rules,”
Federal Register 58, 67558-72. (CFR21, Part 900) (1993).

6. JG Elmore, CK Wells, CH Lee, DH Howard, AR Feinstein, “Variability in
radiologists' interpretations of mammograms,” N Engl J Med 331, 1493-1499 (1994).

7. RML Warren, SW Duffy, “Comparison of single reading with double reading of
mammograms and change in effectiveness with experience,” Br J Radiol 68, 958-962
(1995).

10




10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

CJ Wright, CB Mueller, “Screening mammography and public health policy: The
need for perspective,” Lancet 346, 29-32 (1995).

LW Bassett, RE Hendrick, TL Bassford, PF Butler, D Carter, M DeBor, CJ D'Orsi,
CJ Garlinghouse, RF Jones, AS Langer, JL Lichtenfeld, JR Osuch, LN Reynolds, ES
de Paredes, RE Williams, “Responsibilities of the mammography facility,” In:
Quality determinants of mammography, clinical practice guideline. Number 13.
Washington, DC: US Department of Health and Human Services, AHCPR
publication no. 95-0632 (1994).

JG Elmore, MB Barton, VM Moceri, S Polk, PJ Arena, SW Fletcher, “Ten-year risk
of false-positive screening mammograms and clinical breast examinations,” N Engl J
Med 338, 1089-1096 (1998).

DS May, NC Lee, MR Nadel, RM Henson, DS Miller, “The National Breast and
Cervical Cancer Early Detection Program: Report of the First 4 Years of
Mammography Provided to Medically Underserved Women,” AJR 170, 97-104
(1998). - ‘
SA Feig, MJ Yaffe, “Digital mammography, computer-aided diagnosis, and
telemammography,” Radiol Clin North Am 33, 1205-1228 (1995).

LL Fajardo, MT Yoshino, GW Seeley, R Hunt, TB Hunter, R Friedman, D Cardenas,
R Boyle, “Detection of breast abnormalities on teleradiology transmitted
mammograms,” Invest Radiol 25, 1111-1115 (1990).

MA Goldberg, “Telemammography: Implementation issues,” Telemedicine Journal 1,
215-226 (1995).

HK Huang, SL Lou, E Sickles, D Hoogstrate, M Jahangiri, F Cao, J Wang,
“Technical issues in full-field direct digital telemammography,” [Chapter] In:
Computer Assisted Radiology and Surgery. Lemke HU, Inamura K, Editors. Elsevier
Science B.V., 662-667 (1997).

HK Huang, “Digital Mammography: A Missing Link in a Totally Digital Radiology
Department,” Presented at the EuroPACS 97 Meeting; PISA, Italy. September 25-27,
(1997).

M Murphy, NJ O’Hare, D Wheat, PA McCarthy, A Dowling, R Hayes, H Bowmer,
GF Wilson, MP Molloy, “Digitized mammograms: a preliminary clinical evaluation
and the potential for telemammography,” Journal of Telemedicine and Telecare 5,
193-197 (1999).

SL Lou, HD Lin, KP Lin, D Hoogstrate, “Automatic breast region extraction from
digital mammograms for PACS and telemammography applications,” Computerized
Medical Imaging and Graphics 24, 205-220 (2000).

S Dwyer, Private communications. See also "Telemedicine Targets Mammographic
Services" in Biophotonics International Nov/Dec 1997. Page 10.

SL Lou, EA Sickles, HK Huang, D Hoogstrate, F Cao, J Wang, M Jahangiri, “Full-
field direct digital telemammography: Technical components, study protocols, and
preliminary results,” IEEE Trans Info Technology in Biomedicine 1, 270-278 (1997).
SL Lou, HK Huang, E Sickles, D Hoogstrate, F Cao, ] Wang, “Full-field direct digital
telemammography: system implementation,” Proc SPIE 3339, 156-164 (1998).

Wu M, Zheng Y, North M, Pisano E. NLM tele-educational application for
radiologists to interpret mammography. Proc AMIA Symposium, 2002, pg 909-913
Sheybani EO, Sankar R. ATMTN: a telemammography network architecture. IEEE
Trans Biomed Eng 2002; 49:1438-1443

11



24. GS Maitz, TS Chang, JH Sumkin, PW Wintz, CM Johns, M Ganott, BL Holbert, CM
Hakim, KM Harris, D Gur, JM Herron, “Preliminary clinical evaluation of a high-
resolution telemammography System,” Invest Radiol 32, 236-240 (1997).

25. M Holbert, M Staiger, TS Chang, JD Towers, CA Britton, “Selection of processing
algorithms for digital image compression: A rank-order study,” Acad Radiol 2, 273-
276 (1995).

Appendix
See Attached.

1-7

12



APPENDIX 1

Subjective assessment of high-level image compression of digitized
mammograms

J. Ken Leader*®, Jules H. Sumkin®, Marie A. Ganott™, Christiane Hakim®, Lara Hardesty™, Ratan
Shah®, Luisa Wallace®®, Amy Klym®, John M. Drescher?, Glenn S. Maitz®, David Gur®
®University of Pittsburgh, Pittsburgh, PA USA 15213
®Magee-Womens Hospital, Pittsburgh, PA USA 15213

ABSTRACT

This study was designed to evaluate radiologists’ ability to identify highly-compressed, digitized mammographic
images displayed on high-resolution, monitors. Mammography films were digitized at 50 micron pixel dimensions
using a high-resolution laser film digitizer. Image data were compressed using the irreversible (lossy), wavelet-based
JPEG 2000 method. Twenty images were randomly presented in pairs (one image per monitor) in three modes: mode 1,
non-compressed versus 50:1 compression; mode 2, non-compressed versus 75:1 compression; and mode 3, 50:1 versus
75:1 compression with 20 random pairs presented twice (80 pairs total). Six radiologists were forced to choose which ‘
image had the lower level of data compression in a two-alternative forced choice paradigm. The average percent correct
across the six radiologists for modes 1, 2 and 3 were 52.5% (+/-11.3), 58.3% (+/-14.7), and 583% (+/-1.5),
respectively. Intra-reader agreement ranged from 10 to 50% and Kappa from -0.78 to -0.19. Kappa for inter-reader
agreement ranged from -0.47 to 0.37. The “monitor effect” (left/right) was of the same order of magnitude as the
radiologists’ ability to identify the lower level of image compression. In this controlled evaluation, radiologists did not
accurately discriminate non-compressed and highly-compressed images. Therefore, 75:1 image compression should be
acceptable for review of digitized mammograms in a telemammography system.
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1. INTRODUCTION

Breast cancer screening mammography is widely practiced and increasingly challenging to manage in the clinical
environment, but there is potential for improvement.'” Teleradiology is an approach that may provide more timely
patient management. Image compression,g'13 image cropping,’*™ and image selection” are commonly used in
teleradiology to facilitate the timely transmission of data. The high-spatial resolution required for mammography
complicates the design and implementation of a telemammography system. The large mammographic image file size
(33-55 MBytes per image) is one obstacle to timely transmission of data, especially across low-level data connections.
High-level image compression may assist in overcoming this obstacle and can only be realized with lossy image
compression techniques, which necessitates the loss of some image information and a degree of image degradation.

The use of high-level image compression in medical applications is frequently met with skepticism because of the
potential degradation of the depiction of objects under investigation. Human observer performance studies designed to
evaluate wavelet compression of medical images for clinical applications have reported acceptable compression levels
ranging from 8:1 to 100:1."% Wavelet-based compression, the trend in medical image compression, is reported to be
superior to the original JPEG compression based on the direct cosine transform in terms of image quality at high-levels
of image compression.'®!”
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From our perspective the effect of image degradation from lossy compression of medical image interpretation remains
unresolved, particularly regarding mammography. Observer studies reported that 8:1% and 10:1%” compression ratios
are acceptable for mammography applications using both wavelet and the original JPEG compression methods.
Visualization of calcifications depicted on digitized mammograms was subjectively rated as excellent for wavelet
compression ratios as high as 56:1." Uncompressed digitized mammographic images were rated to be comparable to
images compressed at 30:1 using wavelet compression.”’ These studies are indeed promising, and high-levels of image
compression may be ultimately clinically acceptable in mammography.

Powell et al.? (2000) conducted a clinical evaluation that compared film mammography to digitized images compressed
at 8:1 using wavelet based compression. The accuracy for detecting malignancy was not statistically different when
depicted on film or digitized images in a receiver operating characteristics (ROC) study. The false positive rate at a
fixed sensitivity of 0.90 was significantly lower (better) using digitized images as compared with film. Compressed
digitized images were also slightly better (though not statistically) than film in terms of recall rate for negative
mammograms and those depicting benign findings. The recall rate for mammograms depicting malignant abnormalities
was slightly better (though not statistically) when original films were used as compared with digitized images.

The objective of this study was to determine an acceptable level of image compression in a telemammography
application. The ability of radiologists to discriminate high-levels of image compression as applied to digitized
mammograms was evaluated. Image pairs of different compression levels were randomly presented and viewed side-
by-side on two high-resolution monitors. Six radiologists were forced to choose the lower level of image compression
and rate the relative utility of the images for use in a screening mammography environment.

2. METHODS

2.1 Case selection

This study used twenty breast cancer screening examinations randomly selected from a larger telemammography
project, which was designed to evaluate the ability telemammography to reduce the number of patients being recalled
for additional imaging procedures. One image view from each case (i.e., twenty images total) was selected to represent
each examination. The verified findings depicted in these examinations included masses and calcification clusters
(Table 1). The dataset for this retrospective study was assembled and analyzed under University of Pittsburgh
Institutional Review Board approved protocol, and the image data was anonymized.

Table 1
Image views and depicted abnormalities
Abnormality depicted on image

View Mass Calcifications Mass & calcifications No finding
MLO" 3 2 2 3
CC 3 3 1 3

MLO - mediolateral oblique
CC - craniocaudal

2.2 Image processing

Mammographic films were digitized at 50 micron pixel dimensions and 12-bit grayscale using a high-resolution, laser
film digitizer (Lumiscan 85, Eastman Kodak, Rochester, NY, USA). Each digitized mammographic image was
automatically cropped to decrease the non-tissue area surrounding the breast. The cropped image data were compressed
using the irreversible (lossy), 9/7 transform, wavelet-based JPEG 2000 method at compression ratios of 50:1 and 75:1
and subsequently decompressed prior to display. A total of sixty images were generated for the study, the twenty
original digitized images plus two compressed images at 50:1 and 75:1 ratios for each of these (or a total of sixty
images).
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2.3 Image display

The images were displayed on two calibrated, high-resolution (2048 x 2560), 8-bit grayscale, portrait monitors at a
nominal setting of 80 fiL (DS5100P, Clinton Electronics, Rockford, IL, USA). Typically, when a single image
displayed on the monitor the display scale was approximately 100 micron per pixel. Minimal unsharp masking was
employed. In short, image data were first smoothed with a 2-D 129 mean kernel, and subsequently the weighted (0.10)
smoothed image was subtracted from the original image. Finally, the resulting pixel values were re-scaled from O to
4095. Image magnification and window/level adjustments were not permitted during the study.

Fixed look-up table (LUT) values are automatically calculated based on the pixel value distribution (histogram). In
short, the typical pixel value distribution of digitized mammographic images is bimodal. The center between the two
modes was set as the level value (brightness), and the span of the two modes was set as the window value (contrast).
Additionally, the cropped images were padded (filled) prior to display to restore the full height of the image.

2.4 Study protocol

Six experienced radiologists participated in the study. They were presented image pairs (one image per monitor) that
consisted of the same image at different levels of compression (Fig. 1). The images were paired in three modes: mode
1, non-compressed versus 50:1 compression; mode 2, non-compressed versus 75:1 compression; and mode 3, 50:1
versus 75:1 compression. The sixty image pairs were randomly presented with 20 randomly selected pairs presented a
second time to evaluate intra-observer variability (or a total of eighty pairs). Compression levels were also randomly
assigned between the two monitors for counterbalancing.

| MISCELLANECUS

Fig. 1. Telemammography workstation used for the study.

In a 2-AFC paradigm the radiologists were forced to choose the image (i.e., right or left monitor) that had the lower
Jevel of data compression. In addition, they compared and rated the clinical utility between the two images presented in
each pair. After image review, two questions were presented on a computer scoring form and answered using the
computer mouse (Fig. 2). The radiologists were given written instructions regarding the protocol:
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You will be presented with 80 pairs of images, one image on each monitor. The window and
Jevel values for the monitor display will be fixed. Magnification features will not be available
during this study. One image will contain less information than the other as a result of data
compression. The monitor that displays the less compressed image will be randomly selected.
The same image pairs will appear multiple times throughout the study. After you have
reviewed the images, the “eval case” button on the bottom task bar will bring up two questions
to be answered.

Which monitor contains the image with more information?

r Left

r Right

If these images were part of a screening mammogram exam, for the purpose of
determining the need for additional procedures:

™ The leftimage is superior to the right image.

r The leftimage is equivalent to the rightimage.

r The leftimage is inferior to the right image.

Done

Fig. 2 Computerized scoring form completed for each image pair.

2.5 Data analysis

The average percent correct decisions across the six readers for discriminating the lower level of image compression
was compared with a random (chance) selection using a one-sample T-test for each mode and each monitor. Friedman
Two-Way Analysis of Variances by Ranks was used to test if there was a difference between modes. Kappa was used
to evaluate intra-reader agreement for the twenty repeated pairs of images and inter-reader agreement for each mode.
To determine if a learning effect was present the percent correct decision for the first, second, and third presentations of
pairs of images was tested for trend using the Page Test for Ordered Alternatives. All images were presented a
minimum of three times with the twenty repeated pairs randomly selected. The percent of image pairs rated as
clinically equivalent for both the correct or incorrect decisions for identifying the lower level of image compression
were compared to random (chance) selection using a one-sample T-test for each mode and each monitor.

3. RESULTS

The subjective appearance of the compressed images was extremely similar to the original uncompressed image. The
task of discriminating the more compressed image in each pair was reported to be difficult by all readers. The
smoothing effect of wavelet compression did not produce distinguishable image features such as blocking artifacts
characteristic of high-level original JPEG compression.

Readers’ ability to correctly discriminate the lower level of image compression was only slightly better than chance and
was of the same order of magnitude as the “monitor effect” (Table 2). Readers’ performance levels were not
significantly different across the three presentation modes (p > 0.05). However, the readers correctly identified images
compressed at 50:1 ratio as lower than 75:1 image compression at a rate significantly greater than chance (p < 0.05).
On average the readers performed better when the lower level of compression was presented on the left monitor for all
three modes, but the “monitor effect” (left versus right) was not significant.

418 Proc. of SPIE Vol. 5372




Table 2
Average percent correct for discriminating the lower compression level for all image

pairs when the correct image was on the right monitor and the left monitor

mode 1% mode 2° mode 3°
All images 52.5(11.3) 58.3 (14.7) 58.3 (7.5)°
Images on right monitor 45.7 (25.3) 43.2 (25.8) 47.8 (26.5)
Images on left monitor 62.5 (14.1) 73.2 (25.3) 69.0 (23.1)

* mode 1 - non-compressed & 50:1 compression
® mode 2 - non-compressed & 75:1 compression
“mode 3 - 50:1 & 75:1 compression

d group mean and standard deviation in ()

¢ p < 0.05 one sample T-test

Intra- and inter-reader agreements for discriminating the lower level of data compression were poor for the individual as
well as between readers (Tables 3 and 4). Kappa for intra-reader agreement for readers 1, 2,3, 4,5, and 6 were -0.25,
-0.39, -0.30, -0.19, -0.78, and -0.30, respectively. No two readers consistently agreed across the three presentation
modes. Inter-reader Kappa for discriminating the lower level of image compression for the six readers ranged from
-0.47 to 0.26, -0.36 to 0.37, and -0.30 to 0.30 for modes 1, 2, and 3, respectively (Table 4).

Table 3 Table 4
Comparison between the first and second Kappa for inter-reader agreement for the six readers and the
reads of the twenty repeated image pairs three presentation modes
second read reader
reader first read correct? incorrect mode reader 2 3 4 5 6
1 correct 10 (2) 30 (6) 1? 1 0471 -0.042 0.043 -0200 -0.038
incorrect 30 (6) 30 (6) 2 0.118 0223 -0.100 -0.237
2 correct 15 (3) 30 (6) i 0.255 :g'fgg _00‘11%11
incorrect 40 (8) 15 (3) 5 0,300
5 °°”e°: gg (‘7‘) i(s) (g) 2® 1 0175 -0359 -0354 -0300 0.368
incorrec ™ 3) 2 0284 -0.023 0100 -0.177
4 correct 5(D 25 (5) 3 0.018 -0.100 -0.217
incorrect 25 (5) 45 (9) 4 -0.200 0.125
5 -0.300
4 correct 5() 40 (8)
incorrect 50 (10) 5(Q) 3¢ 1 -0.099 -0.300 0.121 0.100 -0.237
2 -0.100 -0.099 0.100 0.175
5 comect 10(2)  50(10) 3 0.100 -0.200 0.100
. incorrect 20 (4) 20 (4) 4 0.300 -0.031
percentage and number in () 5 -0.100

2 mode 1 - non-compressed & 50:1 compression
® mode 2 - non-compressed & 75:1 compression
¢ mode 3 - 50:1 & 75:1 compression

A slight learning effect was observed in the average reader’s ability to select the lower level of image compression
during the first three presentations (Table 5). The mean percent for correctly discriminating the lower level of image
compression showed an increasing trend across the three presentations that was not significant (p > 0.05). Reader 6 was
an outlier, and, although the trend was not significant, excluding this reader from the analysis removed the increasing
trend across the three presentations.
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Table 5
Percent correct for selecting the less compressed image during the first,

second, and third presentations

reader first (n= 20) second (n = 20) third (n = 20)
1 65.0 50.0 60.0
2 55.0 55.0 60.0
3 50.0 50.0 55.0
4 60.0 65.0 70.0
5 50.0 50.0 50.0
6 35.0 80.0 65.0
mean 52.5 583 60.0°
std 10.4 12.1 7.1
p > 0.05

Images correctly identified as less compressed by the readers were rated as “clinically equivalent” at relatively the same
rate as images incorrectly identified (Table 6). However, on the left monitor the readers rated correctly selected images
as “clinically equivalent” more often than random selection (p < 0.05). The average number of image pairs rated as
clinically equivalent by the six radiologist were 14.2 (+ 4.8), 14.2 (£ 4.1), and 13.3 (£ 5.5) out of the twenty possible
pairs for modes 1, 2, and 3, respectively.

Table 6
Percent of image pairs rated “clinically equivalent” for correct and incorrect selection of lower compression
level for either monitor, the right monitor, and the left monitor

correct choice of lower compression level incorrect choice of lower compression level
mode either monitor’ right monitor left monitor either monitor  right monitor left monitor
1# 48.3 (20.1) 24.0 (13.6) 243 (15.2) 51.7 (20.1) 34.2 (24.9) 17.5 (10.5)
2° 62.3 (19.2) 18.9 (15.6) 43.4 (17.8)° 37.7(19.2) 26.3(15.9) 114 (12.9)°
3° 53.1 (18.6) 19.2 (154) 33.9(17.0) 46.9 (18.6) 27.1 (20.7) 19.8 (14.7)

mode 1 - non-compressed & 50:1 compression
mode 2 - non-compressed & 75:1 compression
mode 3 - 50:1 & 75:1 compression

group mean and standard deviation in ()

a
b
[
d
¢ p < 0.05 one sample T-test

4. DISCUSSION

In this controlled evaluation, image compression achieved with wavelet-based JPEG 2000 was not reliably
discriminated and rated by radiologists and, therefore, could be considered applicable for telemammography
applications. Radiologists did not accurately or reliably select the lower level of image compression between image
pairs when presented side-by-side with non-compressed images and those compressed at 50:1 and 75:1 compression
Jevels. Interestingly, the “monitor effect” (left versus right) was of the same order of magnitude as the radiologists’
ability to discriminate the lower level of image compression. As a group the readers’ ability to identify the lower level
of data compression slightly improved across the readings, but not significantly. The majority of image pairs, which
were compressed at different ratios, were rated as “clinically equivalent” for use in a screening environment
independent of whether the readers selected correctly or incorrectly the less compressed image.

The images in our study were presented on separate, side-by-side monitors with magnification, pan zoom, and

window/level features disabled. Permitting magnification and window/level may (or may not) have improved
discrimination. A similar 2-AFC study by Slone et al."” (2000) evaluated wavelet and original JPEG compression of
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posteroanterior chest digital radiographs and reported that image degradation was detected at compression levels greater
than 11:1 for both compression methods. At a compression level of 75:1 the lower compressed image was correctly
identified approximately 95 % of the time for both the wavelet and the JPEG compression methods. The images were
presented on a single monitor, and the readers were permitted to magnify and toggle between images, which they
acknowledged was conservative and tested the reader’s temporal sensitivity.

Since radiologists could not accurately or reliably discriminate non-compressed and highly-compressed mammographic
images, their interpretation using either non-compressed or highly-compressed images is not likely to differ
substantially. We also note that diligent monitor calibration may be critical to image fidelity.
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OBJECTIVE. We assessed performance changes of a mammographic computer-aided
detection scheme when we restricted the maximum number of regions that could be identified
(cued) as showing positive findings in each case.

MATERIALS AND METHODS. A computer-aided detection scheme was applied to
500 cases (or 2 000 images), including 300 cases in which mammograms showed verified
malignant masses. we evaluated the overall case-based performance of tixc scheme using a
free-response receiver operating characteristic approach, and we measured detection sensitiv-
ity at a fixed false-positive detection rate of 0.4 per image after gradually reducing the maxi-
mum number of cued regions allowed for each case from seven to one.

RESULTS. The original computer-aided detection scheme achieved a maximum case-based
sensitivity of 97% at 3.3 false-positive detected regions per image. For a detection decision score
set at 0.565, the scheme had a 79% (237/300) case-based sensitivity, with 0.4 false-positive de-
tected regions per image. After limiting the number of maximum allowed cued regions per case,
the false-positive rates decreased faster than the true-positive rates. At a maximum of two cued re-
gions per case, the false-positive rate decreased from 0.4 to 0.21 per image, whereas detection
sensitivity decreased from 237 to 220 masses. To maintain sensitivity at 79%, we reduced the
detection decision score to as low as 0.36, which resulted in a reduction of false-positive de-
tected regions from 0.4 to 0.3 per image and a reduction in region-based sensitivity from
66.1% to 61.4%.

CONCLUSION. Limiting the maximum number of cued regions per case can improve
the overall case-based performance of computer-aided detection schemes in mammography.

Y B omputer-aided detection systems
- are routinely used in a number of
medical institutions around the
“world to assist radiclogists in the detection of
abnormalities depicted on mammograms. The
number of mammograms scanned through
commercial computer-detection systems has
been rapidly increasing. Although no general
agreement has been reached on how computer-
aided detection affects radiologists’ perfor-
mance in terms of sensitivity and specificity
[1-4], there are indications that the performance
of the computer-aided detection scheme itself
has an impact on radiologists’ performance in
detecting abnormalities [5, 6], and observer
confidence levels in accepting the cues gener-
ated by these systems increases with higher per-
formance levels of the scheme {7, 8]. Several
commercial computer-aided detection systems
have been approved by the United States Food
and Drug Administration, and the relative per-

formance levels of such systems have been
compared [9, 10]. All commercial computer-
aided detection systems use specific threshold
values to determine whether an identified suspi-
cious region is ultimately cued as a positive
finding, and the performance of these systems
is frequently evaluated on the basis of the
case-based sensitivity achieved at a given false-
positive detection rate. In a case-based (or a
breast-based) analysis, sensitivity is based on the
correct detection of at least one true-positive re-
gion on either the craniocaudal or mediolateral
oblique mammographic view or on both [1].
Evaluation of computer-aided detection per-
formance is not a simple matter. Previous studies
have shown that performance can vary widely
depending on which scoring method is used, and
there is no general agreement on which scoring
method should be used for this purpose {11, 12].
One study showed that at approximately the
same false-positive rate (e.g., 1.5 per image), the
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measured sensitivity for the detection of micro-
calcification clusters ranged between 45% and
85% depending on which of three different as-
sessment methods were used [11].

In addition, computer-aided detection per-
formance depends on the composition of the
image database used [13]. In general, com-
puter-aided detection schemes may identify a
large number of suspicious regions on some
images (e.g., images depicting dense tissue
patterns), but only a few suspicious regions on
other images (e.g., images dominated by fatty
tissue) [14]. Therefore, limiting the maximum
number of suspicious regions allowed to be
cued for one case could potentially reduce the
false-positive rate with a relatively small de-
crease in sensitivity. This approach is used in
commercially available systems, but to the best
of our knowledge, the effect of implementing
the approach 6n image- and case-based sensi-
tivity and false-positive detection rates has not
been described in detail. This study was per-
formed to assess this issue.

Materials and Methods

We selected 500 cases (or 2,000 digitized mam-
mograms) from a large image database available in
our laboratory. Among these cases, verified malig-
nant masses were depicted in 300 cases, and the re-
maining 200 were negative findings. In all cases
with positive findings, a panel of radiologists identi-
fied the locations of the mass regions on the images
using the original diagnostic and biopsy reports. The
central coordinates (¥ and y) of each mass region

Zheng et al.

were visually identified, marked, and saved in a
«truth file” In this data set, mass regions were visi-
ble on both the craniocaudal and mediolateral ob-
lique mammographic views in 270 cases and were
only visible on one of the two views in 30 cases.
Thus, 570 mass regions were identified on the im-
ages in this study. Figure 1 shows the size distribu-
tion of the 300 masses in the data set.

A computer program determined the size of each
mass region by counting the total number of pixels in-
side the identified boundary contour of the region
(multiplied by 0.0016 em? per pixel). The size of a
mass was represented by a large computed area on ei-
ther the craniocaudal or mediolateral oblique mam-
mogram. For each identified mass region, the panel of
radiologists assigned a subjective rating of subtlety
using a 5-point rating scale that ranged from 1 (very
easily visible) to 5 (very subtly visible). Figure 2
shows the distribution of assigned subtlety ratings in
this data set. Subtlety of a mass was represented by
the lower rating assigned to either the craniocaudal or
mediolateral oblique mammographic view. We verified
all cases with negative (or benign) findings by review-
ing the available diagnostic information and the data
from a follow-up examination with negative results,
confirming a minimum of one disease-free year.

A computer-aided detection scheme developed pre-
viously in our laboratory [15] was applied to the 2,000
images in the data set. Because we only examined
computer-aided detection performance for mass detec-
tion in this study, each image was first reduced by
pixel averaging (a factor of 8 in both x and y direc-
tions), increasing the effective pixel size from 50 x 50
4 in the original digitized image to 400 x 400 ym.
The mass detection scheme then identified between 10
and 30 suspicious regions in each image depending on
the regional tissue patterns. For each identified region,

a multilayer regional growth algorithm [16] was ap-
plied to define the contours of the region as depicted in
the image. If the region met simple growth criteria, a
set of features from the interior and surrounding back-
ground of the region was computed by the scheme.
Otherwise, the region was considered to have negative
findings and was deleted. Finally, a feature-based arti-
ficial neural network classified each suspicious region
as showing positive or negative findings by assigning a
detection (or probability) score. In a manner similar to
the commercial computer-aided detection products,
our detection scheme identified a region as having a
positive finding if the detection score exceeded a pre-
determined threshold. If the detection score did not ex-
ceed the threshold, the region was not cued and was
considered to be a negative finding.

After processing all images, we compared the re-
gions with detected positive findings with the results
saved in the truth file. To determine whether a de-
tected region was considered a true-positive finding,
we applied the following criterion: If the distance

between the computed center of a detected™tegion ...

and the visually marked coordinate on a mammo-
gram was shorter than the effective radius (the aver-
age radial length computed by the computer-aided
detection scheme), the region was considered to be 2
match to a true-positive mass. Otherwise, the region
was considered a false-positive case.

To show the original performance of the com-
puter-aided detection scheme when applied to this
data set, we plotted free-response receiver operating
characteristic curves for both case-based and region-
based scores. In the case-based performance curve,
sensitivity was assessed on the basis of the correct
marking of at least one true-positive region in either
(or both) of the two mammographic views, and if
two regions were detected, the higher score was se-
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Fig. 1.—Bar graph shows size distribution of 300 masses depicted in data set. Mass size
is represented by larger depicted area on either craniocaudal or mediolateral oblique

mammographic view.
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Fig. 2—Bar graph shows distribution of subjectively rated subtiety of 300 masses de-
picted in data set. Subtlety of each identified mass was rated on 5-point scale, ranging
from 1 (very easily visible) to 5 {very subtly visible). Mass subtlety is represented by lower-

rated depiction on either craniocaudal or mediolateral oblique mammographic view.
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lected to represent the mass. In the region-based per-
formance curve, if the same mass was depicted on
both craniocaudal and mediolateral oblique views,
we considered these two images to represent two in-
dependent regions.

We applied a threshold score to the artificial neu-
ral network results to evaluate the sensitivity of the
scheme at different false-positive rates. We also ad-
justed the threshold value to produce a false-positive
rate comparable to that of the leading commercial
computer-aided detection systems (e.g., a false-posi-
tive rate of 0.4 regions per image [2]). By changing
the total number of cued regions permitted in each
case to anywhere from seven to one, we compared
the change in performance levels (including both
sensitivity and false-positive rate). The scores gener-
ated by the artificial neural networks for all detected
regions were sorted by value from the highest to the
lowest, and the regions with higher scores were se-
lected sequentially until the predetermined limit of
cued regions per case was reached. In addition, we

" kept the case-based sensitivity constant by reducing

the detection threshold and assessed the changes in
false-positive rates and image-based sensitivity as
the total number of allowed cues per case was re-
duced from seven to two.

Results

Figure 3 shows two computed free-response
receiver operating characteristic curves after
the application of our computer-aided detec-
tion scheme to this data set. One is a case-
based free-response receiver operating charac-
teristic performance curve; the other is a re-
gion-based curve. Setting the threshold value
of the artificial neural network detection scores
at 0.565 generated a decision threshold line, as
shown in Figure 3. At this level, the computer-
aided detection scheme identified 79% of the
malignant masses with 0.4 false-positive re-
gions per image being cued. At this threshold,
the scheme did not detect any false-positive re-
gions in 33.2% {166/500) of the cases.

Table 1 provides the performance levels of
the computer-aided detection scheme when we
limited the maximum number of cued regions
allowed in one case at this threshold level
(0.565). The false-positive detection rate de-
creased substantially faster than the case-based
sensitivity. For example, when we limited the
maximum number of cued regions to two per
case, the detection sensitivity decreased by
7.2% (from 237/300 to 220/300 cases), whereas
the false-positive detection rate decreased by
47.3% (from 0.40 to 0.21 per image). In 65% of
the true-positive cases, the region with the high-
est artificial neural network score was the ma-
lignant mass region (Table 1).

Figure 4 shows five free-response receiver
operating characteristic curves generated when
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of 2,000 mammograms (500 cases) with no limitation on number of cued regions. Detection decision threshold
fline is represented by dotted line. ® = case-based free-response receiver operating characteristic curve, O =
image-based free-response receiver operating characteristic curve.

the maximum allowed number of cues per
case was limited to between seven and two. As
the maximum number of allowed cues was re-
duced, the free-response receiver operating
characteristic curves tended to become steeper.
Table 2 summarizes the results after limiting
the maximum number of cued regions and
changing the threshold value of the artificial
neural network detection scores to maintain a
79% case-based sensitivity. The table shows
that we were able to reduce the false-positive
rates while maintaining a constant sensitivity.

For example, by limiting the maximum al-
lowed number of cues to two per case and ad-
justing the artificial neural network threshold
to 0.36, we reduced the false-positive rate from
0.4 to 0.3 regions per image.

One interesting finding was that the 17 (of
the 237) masses detected using these two scor-
ing methods were not identical. When the
maximum number of cued regions was limited
to two per case, 17 masses with artificial neu-
ral network scores higher than 0.565 (range,
0.57-0.77) were eliminated. Reducing the

TABLE 1 Performance Levels of Computer-Aided Detection'asa Function'of the " -
Maximum Number of Cued Regions Allowed per Case ST )

Sensitivity?
Maximum No. of Faise-Positive Regions®
Cued Regions Case-Based Region-Based
Allowed per Case No.C % Nod % No. Per-image
Rate
No limit 231 79.0 377 66.1 803 0.40
7 237 79.0 376 66.0 795 0.40
5 236 781 370 64.9 753 0.38
4 233 11.1 364 63.9 695 0.35
3 221 15.1 351 61.6 588 0.29
2 220 73.3 316 55.4 423 0.21
1 195 65.0 195 34.2 224 0.11
Note.—Artificial neural network threshold vaue was set at 0.565.
2Detected true-positive cases.
PDetected false-positive regions.
CCases.
9Regions.
581
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threshold score to 0.36 resulted in the identifi-
cation of 17 different masses with artificial
neural network scores in the range between
0.36 and 0.51. Figure 5 shows the distribution
of mass sizes and subtlety ratings of the 34
masses missed by both scoring methods. The
results suggest that the 17 masses that were
detected only when the number of allowed
cues was limited to two per case and the
threshold was lowered tended to be some-
what small. All 34 masses were actually posi-
tive findings. At this time, the follow-up
period on these patients has not been .long

enough to assess the difference (if any) in
clinical impact of the two approaches.

Discussion

Case distributions and rating methods
could have a significant effect on the evalua-
tion of computer-aided detection perfor-
mance levels [11-13]. In this study, we tested
a simple scoring method that alters measured
performance. The method of limiting the
maximum number of cued regions allowed
per case is commonly used in commercial

Performance Levels of Computer-Aided Detection with Constant
L\ : 182 Sensitivity of 79% as a Function of the Maximum Number of Cued Reglons

Allowed per Case

Maximum No. of |Region-Based Sensitivity?|  False-Positive Rate® | petection Decision Value
Cued Regions Per-Image of Artificial Neural

Allowed per Case No.® % No. Rate g Network Scores

No limit 377 66.1 803 0.40 0.565

5 n 65.1 773 0.39 0.560

4 378 66.3 902 0.45 0.500

3 375 65.8 781 0.39 0.470

2 350 61.4 604 0.30 0.360

#Detected true-positive cases.
bDetected false-positive regions.
CRegions.
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computer-aided detection products. However,
the actual scores for each region are not avail-
able to users. Therefore, several related is-
sues—such as the effect of this approach on
overall performance and on the detection (or
the missed detection) of specific masses—
have not, to our knowledge, been described in
the past.

Our study showed that by limiting the maxi-
mum number of allowed regions to be cued in
each case, a substantial fraction of false-positive
regions can be eliminated with only a small de-
crease in sensitivity. If one wishes to maintain
sensitivity, threshold values can be appropri-
ately adjusted for this purpose. Because most
masses were visible on both the craniocaudal
and mediolateral oblique mammograms and be-
cause the detection performance of computer-
aided detection systems is commonly evaluated
using case-based sensitivity, our resuits are quite
encouraging. It appears that this approach could
reduce the false-positive detection rate of the
scheme and possibly eliminate some true-posi-
tive region-based detections while retaining the
initial (unrestricted number of cues) case-based
sensitivity. Although the sensitivity can be
maintained using this approach (changing the
threshold levels for detection), one does not de-
tect exactly the same true-positive masses. We
found that limiting the maximum number of
cues allowed per case and adjusting the thresh-
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old appropriately increased computer-aided de-
tection sensitivity in the subset of smaller
masses. In general, this effect is desirable in that
it could reduce the number of regions that have
to be ruled out by the radiologist. We caution
that the use of this approach may not yield im-
provements of similar magnitude in the clinical
environment with a substantially different distri-
bution of truly positive and truly negative cases.

1t should be noted that the size and subtlety
ratings of masses in the data set were some-
what conservative. In Figures 1 and 2, we used
the larger of the sizes computed for a mass
from the two mammographic views and pre-
sented the less subtle rating for the same mass.
Hence, distribution based on image or region
would show a somewhat smaller average mass
size and a more subtle data set.

Only malignant masses were considered
true-positive identifications in this study. In
visually assessing the false-positive regions
with higher scores (e.g., > 0.7), we found that

AJR:182, March 2004

19% (40/213) of these regions represented well-
defined benign masses (ie., round benign
masses with high contrast and relatively sharp
margins). Considering the detection of benign
masses as either true-positive or false-positive
may have a substantial impact on the evaluation
of computer-aided detection performance lev-
els. Because of the approach we used to reduce
the number of cued regions per case and be-
cause of the size and diversity of the data set
used, we believe that our results are not unique
to our own computer-aided detection scheme.
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Mammography with
Computer-aided Detection:
Reproducibility Assessment—
Initial Experience’ |

‘PURPOSE: To examine the performance and reproducibility of a commercially
available computer-aided detection (CAD) system with a set of mammograms

- -obtained in 100 patients who had undergone blopsy after posmve fmdlngs at

- mammography. '

MATERIALS AND METHODS: One hundred posmve mammographlc examina-
.. tions (four views each), depicting 96 masses and 50 microcalcification clusters, -2re '
""scanned and analyzed three times by the CAD system Reproduublllty of detection
" . sensitivity and the individual CAD- -generated cues in the three images were exam-
_ined. Both abnormahty and region-based detectlon sensitivities were compared ’

. 'RESULTS: Forty-elght (96.0%) of 50 mlcrocalcmcatlon clusters were marked on all'
- three images in the abnormallty—based analysis. Of the remamlng ‘two clusters, one.” -
-+ was marked in two images and one was marked in‘only one. The abnormallty-based
- sensitivity for mass detection ranged from 66.7% (64 of 96).to 70.8% (68 of 96).

" The system generated identical patterns (including'i images with and those without -
“cues) for all three images in 53.3% (213 of 400) of images. For true-positive cluster 3
- regions, 88.9% (80 of 90) were marked.at the same-location in all images. For -
" true-positive mass regions, 69.5% (82 of 118) were marked at the same- locatlons in

- all images. In false-positive detections, only 44.0% (81 of 184) of false-posmve mass -

*“regions and 31.9% (38 of 119) of false- posmve cluster reglons were marked at the

. same Iocatlons on all three images. - :

CONCLUSION: Reproducibility of marked reglons generated by the CAD system is
‘improved from that reported previously, largely as a result of the substantial reduc-
~ tion in the false-positive detection rates. Reproducibility of true-positive identifica-
~ tion of masses remains an important issue that may have methodolog|c and clinical
practice implications.

Mammography is a common and effective method with which to screen for early detec-
tion of breast cancer, to interpret mammograms, and particularly to identify subtle masses
and microcalcification clusters surrounded by complex breast tissue patterns, but it is a
difficult and time-consuming task. Findings in studies show that from 10% to 30% of
breast cancers that are visible on mammograms during retrospective readings are missed
during the original interpretations for various reasons (1-3). One well-documented
method to reduce false-negative rates in mammography is the use of an independent
double-reading approach (4,5). However, this approach is both inefficient and costly. As a
result, after intensive research and substantial improvements in the past 2 decades,
computer-aided detection (CAD) systems have been developed to provide radiologists with
a “second opinion” when they identify suspicious regions for masses or microcalcification
clusters. In the current study, we used one of three commercially available CAD systems
that have been approved by the U.S. Food and Drug Administration and are used for this
purpose.

Because of the potential importance of CAD systems in the clinical environment, several
studies (6~10) have been conducted recently to evaluate the performance of CAD systems
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alone and their possible effect on diag-
nostic performance of radiologists under
a variety of clinical conditions. In one
recent study involving 12,860 patients in
a community breast center, use of CAD
resulted in a 19.5% increase in the num-
ber of cancers detected without undue
effect on the recall rate (from 6.5% to
7.7%) (6). In another large retrospective
study, a false-negative rate of 21% was
found when 14 radiologists interpreted
mammograms, and the CAD system cor-
rectly marked 77% of these missed cases
(7). Thus, researchers claim that CAD
cueing could potentially reduce this
false-negative rate by as much as 77%
without an increase in the recall rate (8).
On the other hand, findings in a different
study showed that despite high (and clin-
ically viable) sensitivity, the CAD system
had no effect on radiologist performance
(including sensitivity and specificity) (9).
These reseafchers suggested that perhaps
the many false-positive markings influ-
enced the radiologists not to have suffi-
cient confidence in the CAD results to
alter their original interpretations (9). Re-
sults in another retrospective study dem-
onstrated that the performance of a CAD
system could affect the performance of
radiologists in the detection of masses
and microcalcification clusters. Highly
performing CAD schemes with high sen-
sitivity and a low false-positive rate could
improve radiologists’ performance signif-
icantly, while poorly performing CAD
schemes could significantly (P < .01) de-
crease readers’ performance (10).

An important issue related to the use of
CAD is the reproducibility of results. In
one study, an early version of Image-
Checker (R2 Technology, Los Altos, Calif)
was evaluated, and the authors suggested
that its reproducibility may be insuffi-
cient for the routine clinical environ-
ment (11). Recently, a new version of the
software was used, which improves the
detection sensitivity and specificity (12).
In the version used in the current study
(ImageChecker, version 2.0), the stated
detection sensitivity for the cancer cases
was increased from 83.7% to 90.4% (in-
cluding an increase in mass detection
from 74.7% to 85.7% and an essentially
unchanged performance for microcalcifi-
cation detection of more than 98%). At
the same time, the false-positive rate was
reduced substantially from approximately
1.0 per image to 0.5 per image (or 4.1~
2.06 false-positive cues per four views in
true-negative cases) (12). The purpose of
our study was to examine the perfor-
mance and reproducibility of a commer-
cially available CAD system by using a set
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of mammograms acquired in 100 pa-
tients who had undergone biopsy after
positive findings at mammography.

MATERIALS AND METHODS

Cases

During the past several years, a large da-
tabase (>1,000 cases) of digitized images
and associated diagnostic results has been
established and managed in our laboratory
under an approved institutional review
board protocol (informed consent was
waived). For the purpose of third-party, we
asked a staff member not otherwise related
to this current investigation to randomly
select 100 mammographic cases (four
views each) from the biopsy records of our
institution during the years 1999-2001.
We requested that 25 of the cases depict
microcalcification clusters and 75 cases de-
pict masses as a primary detection finding.
At least two-thirds of the cases were to be
selected from those proven to be malig-
nant. With the exception of these condi-
tions, cases were selected solely by the staff
member from the biopsy records. The se-
lection process did not involve a previous
review of any of the images. Therefore,
there was no preselection (and potentially
biasing) process as related to the average
tissue density or the subtlety of the abnor-
malities depicted in the images.

Each case could involve one or more ab-
normalities (mass, microcalcification clus-
ter, or both). In these 100 cases, 51 de-
picted only masses (43 depicted one mass
and eight depicted two masses), 12 de-
picted only microcalcification clusters (11
depicted one cluster and one depicted two
clusters), and 37 depicted both masses and
clusters (one mass and one cluster). There
were no cases with more than three abnor-
malities depicted. The data set involved 96
verified masses and 50 verified microcalci-
fication clusters. Sixty-five of the 96 masses
were malignant, and 31 were benign. Thirty-
one of the 50 microcalcification clusters
were associated with malignancy, and 19
were benign. By examining all source
documents (including pathology re-
ports), the locations of all abnormalities
were specified by radiologists.

CAD Evaluation

These 400 images were scanned through
the CAD system three times within a pe-
riod of 3 weeks. After digitization and com-
putation, suspicious masses and microcal-
cification clusters identified by the CAD
system were marked on the output paper
images by using the standard identification
scheme. The CAD system does not outline

the entire mass region or individual micro-
calcifications in a cluster, only a small star
or a triangle is superimposed on the image
to indicate the presence of a suspicious re-
gion for a mass or a cluster, respectively.
The boundaries of masses and clusters were
identified visually on the images by a re-
searcher (B.Z.), who consulted with radiol-
ogists in cases of ambiguity. If the star was
located anywhere inside a true-positive
mass region in the image, this mass was
considered to be identified correctly by the
CAD system. Similarly, as long as a triangle
was overlapping any of the microcalcifica-
tion areas, the mark was considered to rep-
resent a true-positive detection. Otherwise,
the cue was considered to identify a false-
positive region. The processing of each case
resulted in three sets of output images.

Data Analysis

The sensitivity, false-positiye xate, and
reproduicibility of the CAD system with
these 100 cases (or 400 images) were ana-
lyzed for abnormality- and region-based
values. In the abnormality-based analysis,
the sensitivity is assessed on the basis of
the correct marking of at least one true-
positive region in either view (craniocau-
dal, mediolateral oblique, or both), which
included 96 masses (65 malignant) and 50
calcifications (31 malignant) in the 100
cases. In cases with more than one abnor-
mality, each was considered to be indepen-
dent of the others. In the region-based
analysis, the abnormality depicted in each
view (either craniocaudal or mediolateral
oblique) was considered an independent
true-positive finding. Sensitivity was then
computed on the basis of the number of
correctly detected true-positive regions
(rather than abnormalities). This approach
included 292 positive findings—narmely,
96 masses and 50 clusters, each visible on
two views. To compare the differences in
proportions of correctly detected abnor-
malities among replicated images, the pair-
wise McNemar test was applied to the data
set.

RESULTS

Tables 1 and 2 summarize the performance
of the CAD systern with respect to mass
and microcalcification cluster detection in
each of the three scans. Abnormality-based
sensitivity for mass detection ranged from
66.7% (64 of 96) to 70.8% (68 of 96). Al-
though scan 2 yielded highest sensitivity
for mass detection (68 of 96), scan 1 de-
picted the highest number of malignant
masses (47 of 65). For microcalcification
cluster detection, 48 of 50 clusters were
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TABLE 1
Mass Detection Performance of CAD System during Each Scan

Sensitivity

Sensitivity (all cases) (malignant cases only)

Scan Abnormality Region Based Abnormality Region Based False-Positive Rate
No. Based (%) (%) Based (%) (%) per Image
1 69.8 52.1 72.3 54.6 0.33
(67 of 96) (100 of 192) (47 of 65) (71 of 130) (130 of 400)
2 70.8 52.6 70.8 523 0.33
(68 of 96) (101 of 192) (46 of 65) (68 of 130) (131 of 400)
3 66.7 51.0 69.2 51.5 0.31
(64 of 96) (98 of 192) (45 of 65) (67 of 130) (125 of 400)
TABLE 2

Microcalcification Cluster Detection Performance of CAD System
during Each Scan

Sensitivity

Sensitivity (all cases) (malignant cases only)

Scan Abnormality  Region Based ~ Abnormality ~ Region Based False-Positive Rate
No. Eased 1%) (%) Based (%) (%) per fmage
1 96.0 85.0 93.5 85.5 017
(48 of 50) (85 of 100) (29 of 31) (53 of 62) (69 of 400)
2 98.0 87.0 96.8 87.1 0.19
(49 of 50) (87 of 100) (30 of 37) (54 of 62) (77 of 400)
3 100 86.0 100 87.1 0.20
(50 of 50) (86 of 100) (31 of 37) (54 of 62) (79 of 400)
TABLE 3 .
Number of Times a Mass (or a Region) was Detected
No. of True-Positive Malignant  False-Positive
Times  True-Positive Malignant Mass Mass Mass Total Marked
Detected Masses Masses Regions Regions Regions Mass Regions
3 (%) 58 41 82 58 81 163
(77.3) (78.8) (69.5) (71.6) (44.0) (54.0)
2 (%) 8 4 17 8 40 57
(10.7) (7.7 (14.4) 9.9 (21.7) (18.9)
1 (%) 9 7 19 14 63 82
(12.0) (13.5) (16.1) (17.3) (34.3) 27.1)
Total 75 52 118 81 184 302
TABLE 4

Number of Times a Microcalcification Cluster (or a Region) was Detected

No. of True-Positive Malignant  False-Positive  Total Marked
Times  True-Positive Malignant Cluster Cluster Cluster Cluster
Detected Clusters Clusters Regions Regions Regions Regions
3 (%) 48 29 80 50 38 118
(96.0) (93.5) (88.9) (89.3) (31.9) (56.5)
2 (%) 1 1 8 5 30 38
(2.0) (3.2 (8.9) (8.9) (25.2) (18.2)
1 (%) 1 1 2 1 51 53
(2.0) (3.2 2.2) (1.8) (42.9) (25.3)
Total 50 31 90 56 119 209

detected by the CAD system on all three
images. Two malignant clusters were
missed in two of three scans (scans 1 and
2), and one of these clusters was missed in
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scan 2. With the pairwise McNemar test,
no significant (P > .3) differences were
found in the detection results between any
pair of the three scans.

For region-based sensitivity, mass de-
tection ranged from 51.0% (98 of 192)
to 52.6% (101 of 192). The total num-
ber of masses detected ranged from 98
to 101 in each of the three scans. How-
ever, the actual difference in the indi-
vidual mass regions detected was larger.
For example, scan 1 depicted 100 re-
gions and scan 2 depicted 101 regions.
However, only 88 of these regions were
detected in both images. For the detec-
tion of microcalcification clusters, the
region-based sensitivity ranged from
85.0% (85 of 100) to 87.0% (87 of 100)
for individual cluster regions and from
85.5% (53 of 62) to 87.1% (54 of 62) for
malignant clusters.

Although Tables 1 and 2 show that the
total number of regions detected in this
set of images is relatively constant with
all three scans, the locations of the re-
fions detected (in particular, false-posi-
tive regions) could differ from scan to
scan. In 213 of 400 images, the output
results for all three scans were identical,
which represents an overall reproducibil-
ity of 53.3%. Among these images, 37.6%
(80 of 213) had no cues (including nei-
ther true-positive nor false-positive cues)
in all three scans. For the remaining 320
images, the CAD system marked 511 re-
gions (1.6 cues per image) in three scans
(including true-positive cues). Of these
511 marked regions, 281 were identified
on all three scans (55% region-based re-
producibility).

Tables 3 and 4 summarize the num-
ber of true-positive and false-positive
masses and microcalcification clusters
(including both abnormalities and re-
gions) that were identified in all three
scans, two scans, or only one scan. The
results show that the reproducibility for
the true-positive regions (those identi-
fied in all three scans) is substantially
higher than that for the false-positive
regions. For the true-positive mass re-
gions, the CAD system generated 118
cues in three scans, and 82 (69.5%) of
them were marked at the same loca-
tions. For the true-positive cued cluster
regions, 88.9% (80 of 90) of cues were
in the same locations for all three scans.
On the other hand, the reproducibility
of the false-positive cues was much
lower, with a higher fraction of differ-
ent cues being generated in each scan.
Only 44.0% (81 of 184) of the false-
positive mass regions and 31.9% (38 of
119) of the false-positive microcalcifica-
tion cluster regions were marked at the
same locations in all three scans.
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DISCUSSION

In a previous study, 38.5% (77 of 200) of
images had CAD cues that were located
congruently in all three scans (11). In the
current study, the CAD system generated
identical results on 53.0% (213 of 400) of
the images. The improvement in repro-
ducibility may be largely a result of the
substantial decrease in the false-positive
detection rate (from approximately 1.0 to
0.5 per image) (12). When we exclude 80
images that had no CAD cues, the repro-
ducibility in the remaining 320 images was
reduced to 41.6% (133 of 320). However,
the reproducibility in detecting specific
true-positive masses and microcalcification
clusters is perhaps more important than
the more general image-based reproduc-
ibility. It is generally difficult to directly
compare the detection performance in
two experiments, because different image
databases were used and the results de-
pend heavily on the difficulty of the se-
lected cases (13). However, some compar-
ative information can be ascertained. In a
previous report, the CAD system per-
formed better for mass detection (86.9%
abnormality-based sensitivity) than for mi-
crocalcification cluster detection (76.6%)
(11), while in the current study, sensitivity
for the detection of microcalcification
clusters was higher than 96%, and the
sensitivity for mass detection was in the
range of 70%. These results may indicate
that the microcalcification clusters de-
picted in our data set were easier to de-
tect, and masses depicted in our database
were more subtle. The case selection pro-
tocol we used should have reduced bi-
ases; however, the results presented
herein with a small database may not
represent the actual performance of the
system in a clinical setting. Findings in
the current study demonstrated clearly
that the issue of reproducibility of image-
based CAD systems needed to be investi-
gated further.

It should be noted that we obtained
somewhat different results in absolute
terms for the benign and malignant
cases, but the pattern for the two groups
remained similar. All cases in our study
were sufficiently suspicious to ultimately
warrant a recommendation for biopsy.
We believe that at this stage, CAD
schemes should be designed and opti-
mized to identify this group of cases, in-
cluding those that ultimately prove to be
benign. It is well known that repeated
scanning of the same image results in a
slightly different digital value matrix for
a variety of technical reasons. In current
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CAD systems, a binary threshold is typi-
cally used to generate detection marks.
Each marked region has a computed
score that is above a predetermined
threshold; hence, lesions with computed
scores that are near the threshold are vul-
nerable to small changes and may be de-
tected in one image and missed in an-
other. Findings in the present study show
that the reproducibility of false-positive
cues was much lower than that of true-
positive cues (Tables 3 and 4), because
the detection scores may be close to the
threshold. We did not perform a com-
plete long-term follow-up to confirm that
all false-positive cues actually repre-
sented negative regions. Should any
false-positive detection prove to be a true
abnormality, the computed reproducibil-
ity level would be lower than that re-
ported herein.

Note that the databases used in this
and a previous (11) study were small;
hence, the results may not represent the
actual reproducibility of CAD systems in
the screening environment. Despite this
limitation, findings in the two studies
highlight an important finding. Current
CAD schemes are sensitive to small vari-
ations in the digital value matrices that
result from repeated scanning of the
same images. This may have method-
ologic and clinical practice implications
that need to be addressed. The fact that
all abnormalities depicted in the present
study were visible on both views indi-
cates that the cases were not particularly
subtle and that the findings we report
herein, including possible implications,
may be magnified in cases that are more
difficult to identify visually or when the
abnormality is visible only on one view.
We suspect that this sensitivity to minor
changes in the matrices is not unique to
the CAD system evaluated in the current
study. Full-field digital mammography
systems are rapidly becoming available
(14,15). By definition, once an image is
acquired, the CAD detection result will
be 100% reproducible when the same
CAD scheme is applied repeatedly to
such an image. To be optimal, however,
current CAD schemes may have to be
reengineered and reoptimized by using
digitally acquired images before these
schemes can be applied optimally to full-
field digital mammography systems. An
investigation on possible effects of re-
peated image acquisition of the same
breast on CAD results is beyond the scope
of the present study.

Findings in our preliminary study sug-
gest that sensitivity for the detection of
microcalcification clusters is high; as a

result, reproducibility is also high. These
results are achieved at a low false-positive
detection rate; hence, it is a useful tool
during the diagnostic process. Our results
raise the important question about the
possible need to maintain records of CAD
cues as available during the interpreta-
tion of the individual cases. This may
become an even more important issue as
cancer detection continues to progress
toward an earlier stage (hence, a more
subtle appearance) on the average. De-
tailed documentation of all available in-
formation at the time of diagnosis is not
always done, particularly since informa-
tion is often provided verbally. In the
case of screening mammographic inter-
pretation, however, the presence of a ma-
lignancy that was visible (in retrospect)
on a previous mammogram and in which
a follow-up scan of the original images in
a CAD system may produce a true-posi-
tive identification, could present a medi-
colegal problem. It will be difficult to ar-
gue that the abnormality in question was
not identified as suspicious on the origi-
nal image. Findings in our preliminary
study suggest that this may be the case in
a noticeable fraction of mass cases (ap-
proximately 20%, as shown in Table 3).

The current practice associated with
the use of CAD in the mammographic
environment is not clear on whether a
record of the CAD results used during the
case interpretation should be retained.
Until mass detection is substantially im-
proved, results in our study suggest that
such a practice should be considered. In-
terestingly, although largely impractical,
our study findings clearly suggest that at
this level of performance, multiple re-
peated scans of each case could be ac-
quired to improve the performance of
CAD schemes. ' :

References

1. Bird RE, Wallace TW, Yankaskas BC. Anal-
ysis of cancers missed at screening mam-
mography. Radiology 1992; 184:613-617.

2. Harvey JA, Fajardo LL, Innis CA. Previous
mammograms in patients with impalpa-
ble breast carcinomas: retrospective vs
blinded interpretation. AJR Am ] Roent-
genol 1993; 161:1167-1172.

3. Goergen SK, Evans ], Cohen GP, MacMil-
lan JH. Characteristics of breast carcino-
mas missed by screening radiologists. Ra-
diology 1997; 204:131-135.

4. Thurfjeli EL, Lernevail KA, Taube AAS. Ben-
efit of independent double reading in a
population-based mammography screen-
ing program. Radiology 1994; 191:241-
244.

5. Hendee WR, Beam C, Hendrick E. Propo-
sition: all mammograms should be dou-
ble-read. Med Phys 1999; 26:115-118.

6. Freer TW, Ulissey MJ. Screening mam-
mography with computer-aided detec-

Mammography with Computer-aided Detection: Reproducibility Assessment - 61




*

‘Radiology

®

0

tion: prospective study of 12,860 patients
in a community breast center. Radiology
2001; 220:781-786.

Warren Burhenne L], Wood SA, D’Orsi
CJ, et al. Potential contribution of com-
puter-aided detection to the sensitivity of
screening mammography. Radiology 2000;
215:554-562.

Birdwell RL, Ikeda DM, O’Shauhhnessy
KF, Sickles EA. Mammographic character-
istics of 115 missed cancers later detected
with screening mammography and the
potential utility of computer-aided detec-
tion. Radiology 2001; 219:192-202.
Moberg K, Bjurstam N, Wilczek B, Rost-
gard L, Egge E, Muren C. Computed as-

62 - Radiology - july 2003

10.

11.

12.

13.

sisted detection of interval breast cancers.
Eur Radiol 2001; 39:104-110.

Zheng B, Ganott MA, Britton CA, et al.
Soft-copy mammographic reading with
different computer-assisted detection
cueing environments: preliminary find-
ings. Radiology 2001; 221:633-640.
Malich A, Azhari T, Bohm T, Fleck M,
Kaiser WA. Reproducibility: an important
factor determining the quality of com-
puter aided detection (CAD) systems. Eur
Radiol 2000; 36:170-174.

Castellino RA, Roehrig JR, Zhang W. Im-
proved computer-aided detection (CAD)
algorithms for screening mammograms
(abstr). Radiology 2000; 217(P): 400.
Nishikawa RM, Giger ML, Doi K, et al. Ef-

14.

15.

fect of case selection on the performance of
computer-aided detection schemes. Med
Phys 1994; 21:265-269.

Lewin JM, Hendric RE, D’Orsi CJ, et al.
Comparison of full-field digital mam-
mography with screen-film mammogra-
phy for caner detection: results of 4,945
paired examinations. Radiology 2001;
218:873-880.

Venta LA, Hendrick RE, Adler YT, et al.
Rates and causes of disagreement in inter-
pretation of full-field digital mammogra-

. phy and screen-film mammography in a

diagnostic setting. AJR Am ] Roentgenol
2001; 176:1241-1248.

Zheng et al



APPENDIX 4

Integrated density of a lesion: A quantitative, mammographically derived,

invariable measure
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A method for quantitatively estimating lesion “‘size”” from mammographic images was developed
and evaluated. The main idea behind the measure, termed “integrated density” (ID), is that the total
x-ray attenuation attributable to an object is theoretically invariant with respect to the projected
view and object deformation. Because it is possible to estimate x-ray attenuation of a lesion from
relative film densities, after appropriate corrections for background, the invariant property of the
measure is expected to result in an objective method for evaluating the “sizes” of breast lesions. ID
was calculated as the integral of the estimated image density attributable to a lesion, relative to
surrounding background, over the area of the lesion and after corrections for the nonlinearity of the
film characteristic curve. This effectively provides a measure proportional to lesion volume. We
computed ID and more traditional measures of size (such as “mass diameter”” and “effective size™)
for 100 pairs of ipsilateral mammogiaphic views, cach containing a lesiou Lhai was rualively
visible in both views. The correlation between values calculated for each measure from correspond-
ing pairs of ipsilateral views were computed and compared. All three size-related measures (mass
diameter, effective size, and ID) exhibited reasonable linear relationship between paired views
(r*>0.7,P<0.001). Specifically, the ID measures for the 100 masses were found to be highly
correlated (72=0.9,P<0.001) between ipsilateral views of the same mass. The correlation in-
creased substantially (r2=0.95), when a measure with linear dimensions of length was defined as
the cube root of ID. There is a high degree of correlation between ID-based measures obtained from
different views of the same mass. ID-based measures showed a higher degree of invariance than

mass diameter or effective size. © 2003 American Association of Physicists in Medicine.

[DOI: 10.1118/1.1582571]
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I. INTRODUCTION

Mammography has been frequently recommended as a rou-
tine screening tool to detect breast cancers at an earlier

- stage.! While it has been shown that mammographic screen-

ing can substantially reduce cancer-related mortality and
morbidity,> identifying breast cancers in the screening en-
vironment with high sensitivity and specificity is a difficult
task due to the low expected cancers detected in a large
volume of cases and the complex patterns as depicted on
mammograms.** Detection and diagnostic accuracy of breast
cancers using mammograms can be improved using quanti-
tative analysis of masses.®™ Studies of cases with prior ex-
aminations demonstrated that a change in the density or con-
tour of a mass over time can be an indicative sign of
malignancy.'® Other studies showed that the change in mass
size was one of the dominant factors in determining breast
cancer prognosis.“’12 However, inter- and intra-observer
variability, when visually and subjectively describing a mass
or its change over time between consecutive examinations,
makes this assessment quite difficult and often
unreliable.!>!*

Quantitative measurements and analyses of masses have
been widely used in computer-aided detection and character-
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ization (discrimination) schemes.!> A large number of fea-
tures (including morphologic, texture, and density based”’ls)
have been investigated in an attempt to quantitatively and
objectively represent masses. Currently, there is no standard
that defines a mass and its surrounding background. Without
such a standard, studies have shown that measured contrast
values of a mass region could change substantially if the
definition of the surrounding background of a mass was
varied.!”® Therefore, measurements of mass contrast and other
related features are frequently scheme dependent. In addi-
tion, due to the wide variation of tissue presentation resulting
from breast compression, image projection, and field nonuni-
formity, a large number of computed image-based features of
a mass, as measured from different images, is not a
constant.?>?! Therefore, it would be desirable to define a
measure of a mass that is invariant to tissue deformation and
the projection view. It has been theoretically shown that un-
der a few conditions, the total attenuation (termed here inte-
grated density or ID) of an object is an invariant quantity
with respect to geometrical deformation of an object in two-
dimensional projected images (such as mammograms).*
There is no experimental validation that in fact ID is an
invariant measure.”? In this study, we experimentally evalu-

© 2003 Am. Assoc. Phys. Med. 1805
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ate integrated density (ID) as an invariant measure represent-
ing masses depicted on mammograms. After correcting for
film nonlinearity, and estimating the density of underlying
tissue, we assess whether ID as computed for the same 100
masses depicted during the same examination on both CC
and MLO views is invariant. The purpose of this preliminary
study is intended only to assess the degree of ID invariance
with respect to breast compression and projection views, and
not changes over time.

Il. MATERIALS AND METHODS
A. Defining integrated density

Assuming a monoenergetic X-ray source, for a mass
present in a breast, the quantity

ez

where V is the volume occupied by the mass and' gy, s its
local x-ray attenuation coefficient, is invariant, but it cannot
be measured directly from the image. However, if it is as-
sumed that the attenuation coefficient of the breast tissue
surrounding the mass (uy) can be estimated with reasonable
accuracy, then the quantity

ffvj(uM—nN)dV#[/fAMV,

remains essentially invariant and can be approximated from
an image.

To demonstrate this, consider the density of a single pixel
within the image projection of the mass. In the case of a
mammographic film image, for which the digitized density
values have been adjusted for the film’s characteristic curve,
the corrected density at an image pixel, D (u,v), can be
calculated as

- e ..

D(u,v)=Const+ ylogl E - éxp(‘— j My dx
L

—f (l/«M‘lLN)dx)

Ly

=Const+ ylogE— 7f uydx
L

"7[ (pepy— my)dx,
Ly

where E is the overall exposure, y is the film’s gamma, the
first integral is taken over the whole breast tissue (L) as pro-
jected onto the image, and the second integral is taken over
the mass region (L) as projected onto the image. The first
two terms on the left of the expanded expression correspond
to background density, Dgkg, of the film (i.e., film base plus
nonattenuated exposure including scatter contribution). The
third term is the reduction in density resulting from sur-
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rounding tissues, Dyormar, and the final term is the reduc-
tion in density attributed to the presence of the mass. This
pixel density can be rewritten as

D(u,v)=Dpxc—DnormAL™ ny Apdx,
M
or, rearranging this equation,
7), A dx=Dggc—Dnormar=D(4,0).
o .

If we integrate this over the region, R, defined by the projec-
tion of the mass, we obtain

J j (y A,u,dx)dudv
Ly
R

=JJ(DBKG—DN0RML)dudU’J J’D(u,v)dudv,
R R

and simplifying the left-hand side,

'ijfAﬂdv=fI(DBKG_DNORMM)dudU
v R

-—j f D(u,v)dudv.

R

The left-hand side of this expression is the film’s 7y times a
quantity that is expected to be essentially invariant; hence, it
should be invariant for a particular type of film (in the “lin-
ear” range). Thus, we define ID as

ID=yf fjAll«dV,
v

which can be approximated as
£ ID~(Dgikc—DnokmaL—Dmass)Ar=C AR -

Therefore, ID is represented by the area of the mass, Apg,
multiplied by the average contrast difference between the
mass and the surrounding tissue, where the mass area is de-
fined to be the projected area associated with the interior of
the mass and the average mass contrast, C, is defined as the
average difference in linearized densities between the under-
lying tissue background and the mass itself.! It should be
emphasized that x-ray beam hardening is ignored in this sim-
plification and scatter radiation is assumed to contribute a
relatively uniform distribution in both the mass and back-
ground areas. Hence, it can be represented as a constant in
the background term. Determining the relative change in log-
exposure, from film density in mammograms, involves ap-
proximating the density due to the combination of back-
ground (including scatter) and normal tissues (ie., Dgkg
—DnormaL)» Which would be present if the lesion did not
exist. This can be estimated as the mean pixel value of the
area outside the lesion. It should be noted that such estima-
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tion is based on the assumption that the “normal” tissue is
distributed “uniformly” over the area of a projected lesion
and the surrounding area. Therefore, measurement of the sur-
rounding area would closely resemble the measurement of
the underlying tissue if the lesion was absent. Because of the
assumptions mentioned above, it was the intent of this study
to assess the extent to which ID as simply computed from the
image remains invariant to deformation or projection view.
Film characteristic curve linearization: Digitized film
density values were corrected for the characteristic curve to
produce values that were linearly proportional to log-
exposure (in the linear range). First, the laser film digitizer
was routinely calibrated to assure that film optical density
(OD) was linearly translated into digitized pixel values in the
density range of interest. Second, film OD values were cor-
rected so that they were linearly proportional to log-exposure
units. A generic curve was used for this purpose using the
data for the specific mammography film used in our facility
(Eastman Kodak Min-R 2000 film). 2 For computational
ease. the generic curve was represented bv a splire

function. To define ID.in terms of more familiar “density” ~

units, rather than log-exposure units, we converted back ex-
posure values to linearized density values by fitting a straight
line to this curve. As a result, for each OD value, we com-
puted the corresponding log-exposure unit using the spline
function and then converted it to a “linearized” OD value
using the “fitted” line.

Delineating mass regions: For each mass, the correspond-
ing pair of mammographic views was reviewed by experi-
enced mammographers who initially identified a central
point in the projection of the mass as depicted in two projec-
tions. A semi-automatic delineation of mass boundaries was
then performed using a region growing routine similar to the
technique described by Matsumoto et al. 24 For each projec-
tion, the location representing the central point (pixel) of the
mass was first identified on digitized mammograms. Based
on the initial location, the algorithm automatically deter-
mined a “transition layer,” where a substantial change in
region growth and margin irregularity was observed. All pix-
els within the identified region boundary were considered to
be in the region (R) depicting the mass. Mass delineation
could affect the results since both the area of the mass (A )
and the average density within the mass (D yass) are used to
compute ID.

Measuring mass background: Once a mass region (R) had
been delineated, the geometric center-of-mass of the lesion
was computed, and the maximum distance of this point to the
lesion boundary was determined. For background density es-
timation, a region was defined as all tissue regions outside
the lesion, within a circle centered at the center of mass
(R"), with a radius difference (Aradius) longer than the
maximum distance to the lesion’s boundary. Linearized den-
sity values within the background region (R') were aver-
aged.

To estimate the density of normal tissue in the areas
where the mass overlaps in the projection image, we used the
average density value of the surrounding area outside the
mass. The radius difference was initially chosen as A radius
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FiG. 1. An example of a pair of images depicting a mass in two views. The
mass is relatively visible in both ihe CC (left) and MLO (right) views.
Super:uposed on each view are the mass center (4 ”'J, the computed iiass
boundary, and the corresponding mass background (cucular region exclud-
ing the interior of the mass region).

=1 cm for the background estimation. However, since the
definition of the background region can affect the computed
ID, we investigated this issue in the following manner. Based
on the distribution of mass diameters in our database, we
selected four values for the radius differences (A radius
=5 mm, 7.5 mm, 10 mm, or 12.5 mm) to be considered as
the background area. IDs were estimated from the CC and
MLO views using the different background definitions, and
the correlations between computed ID values for the corre-
sponding views were computed.

ID computation for each mass: The area of the mass, Ag,
was obtained by counting the number of pixels inside the
region R and converting 1t to an area (one pixel represented
an area of 100X 100 xm? or 0.01 mm?). Average mass con-
trast, C, was computed as the difference in average density
values within the regions R and R'. Finally, ID is the product
of the mass area and the average mass contrast (i.e., ID=~C

Ap). This process was performed independently for each
mammographic view.

Figure 1 demonstrates an example of the regions analyzed
in one case. The mass was clearly visible in both the CC
view and MLO views. In each view, an irregular boundary
marks the mass region as automatically determined by the
software. The background region of surrounding tissue that
was used in the analysis is also shown.

B. Other relevant measures

In addition to the computed ID, two mammographically
based measures were derived for each projection of a mass,
as follows: (1) Mass diameter was defined as the maximum
diameter (or longest axis) of the mass as depicted in the
image (in mm); and (2) effective size was defined as the
squared root of the product of maximum and minimum di-
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ameters (longest axis and shortest axis) and was also mea-
sured in mm.>* These measures were used for comparison
with ID, as these are frequently used in the clinical environ-
ment and in CAD assessments.

C. Dataset

A total of 100 verified cases were selected from our data-
base of patients who have undergone screening mammogra-
phy in one of our clinical facilities. Each case included an
ipsilateral pair of craniocaudal (CC) and mediolateral ob-
lique (MLO) mammographic images. CC and MLO views of
the same breast from the same examination were used. Cases
were selected only if a well-defined mass was depicted on
both views. Of the 100 selected masses, 64 were malignant
and 36 benign. All films were digitized using a laser film
digitizer (Lumisys, Eastman Kodak Co., Rochester, NY) at
100X 100 m? pixel size and 12-bit contrast resolution. The
laser film digitizer was routinely calibrated to assure that film
optical densny (OD) is linearly translated into digital pixel
#yalues in the range of 0.2 to 3.8 OD (1 pixel value
=0.001 OD). The three measures (ID, diameter, and effec-
tive size) were estimated for both views of each of the 100
masses in the dataset.

D. Evaluation

In this study we compared the results of the three mea-
sures as computed independently for each of the two views.
For each measure, we computed the correlation (Pearson’s
r?) between values computed from the CC views and those
from the MLO views. The results for each measure were also
plotted in corresponding scattergrams.

Because of the units associated with these measures, it is
suboptimal to compare directly the correlations for ID with
those computed for the other two measures. ID is propor-
tional to volume, while the other two measures are defined in
units of lengths. Therefore, we defined a cube root of ID as a
more appropriate measure.for comparisons (which is given

“in unit of length) and report the results of this measure, as
well.

To evaluate size-dependent differences between paired
measurements obtained from the two views for each of the
100 masses, we divided the database into three subsets (<10
mm, 10-20 mm, and >20 mm). The absolute values of the
differences and the range were evaluated for each of the
subsets.

Geometric eccentricity of a mass is one factor that could
affect the results. Therefore, we categorized masses into two
groups by their eccentricity, and repeated the analyses for
each of the subgroups. We classified cases into the subgroups
using the two diameters dcc and dyo, obtained from the
two views, and computed a ratio é for each mass as: é
=max(dcc/dmro-dmLo/dcc). All masses for which é
<1.1, were assigned to one group (more “spherical”) and
the remaining masses (more ‘“‘eccentric’”’) were assigned to
the other group. Masses with substantially different diam-
eters as depicted on the CC and MLO views typically exhibit
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Fic. 2. Distribution of the mass sizes for the 100 masses used in this study.
Mass size was determined by averaging maximum diameters (mm) obtained
from the two ipsilateral views (CC and MLO).
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high eccentricity. Thus, a relatively low correlation for diam-
eter or effective size was expected in this group.

Ill. RESULTS

Figure 2 shows the distribution of mass sizes. The size of
each mass was determined by averaging the two maximum
diameters obtained from the two views (CC and MLO). As
can be seen from the figure, the 100 selected masses ranged
in sizes from relatively small (<10 mm) to quite large (>25
mm).

Table I shows the linear correlation coefficients (Pearson’s
r2) between matched pairs of measures (i.e., mass diameter,
effective size, mass area, mass contrast, and ID) from the
two views. Figure 3 shows the corresponding scattergrams
for (a) mass diameter, (b) effective size, (c) ID, and (d) cube
root of ID. The size-related measures (mass diameter and
effective size) were found to follow a reasonable linear rela-

tionship (P<<0.001). Despite the relatlvely weaker correla-"

tion exhibited by the mass contrast (r*=0.45), the ID mea-
sure, which is the product of mass area and relative contrast,
highly correlated between paired measurements (r*=0.9,P
<0.001). Figure 3 also demonstrates the scattergram of the
cube root of ID (\/mm2 AOD), which allows for a more
valid comparison with the mass diameter and effective size

TaBLE L. Linear correlation coefficients (Pearson’s r?) of various mass size-
related measures (mass diameter, effective size, mass area, mass contrast,
and ID) as measured from the CC and MLO view using 100 masses for the
assessment.

Mass Mass
diameter  Effective size  Mass area  contrast ID
Correlation 0.74 0.79 0.83 045 0.90

coefficient

,.2

T
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FiG. 3. Scattergrams of the quantitative measures (a) mass diameter, (b) effective size, (c) ID, and (d) cube root of ID, as computed from paired ipsilateral

views of 100 masses. The diagonal line represents identical measures.

since it is represented by a similar dimension. The correla-
tion coefficient for the data shown for this measure is sub-
stantially higher r2=0.95.

Table II shows the ranges of the absolute differences be-
tween paired measures obtained from the two views for the
different subsets of nmass sizes. Three subsets
(mass diameter<<10 mm, 10-20 mm, and.>20 mm) are

TaBLE 1. Absolute values of differences between paired measures obtained
from two corresponding views for the three subsets of masses segmented by
mass size.

Mass diameter

<10 mm 10-20 mm >20 mm
Number of masses 23 64 13
Difference in 1.1+0.8 22*1.9 4,0+29
mass diameter
Amm
Difference in 1.1x0.7 1.6*x1.0 26*1.8
effective size
Amm
Difference in ID 22x15 5157 20.2+26.9
A(mm?*.AOD)
Difference in 0.13+0.1 0.14x=0.07 0.21+0.22

cube root of ID

A(/mm™-AOD)

shown. Differences for all measures increase as the mass
diameter increase. Measured eccentricity values were 1.14
+0.12, 1.17#0.16, and 1.19%+0.15 for the three groups, re-
spectively.

Table III shows the linear correlation coefficients of the
measures, for each of the subgroups of masses based on ec-
centricity. As can be seen from this table, both ID and cube
root of ID correlated well for the different types of masses,
those with low or high eccentricity. The other two measures

Taste Il Linear correlation coefficients (Pearson’s r?) between corre-
sponding paired views of the same masses for the two groups of cases
segmented by eccentricity.

Eccentricity (&)

<1.1 >1.1
Number of masses 44 56

Mass diameter 0.98 0.58
r?

Effective size 0.85 0.74
(r*

ID 0.92 0.90
)

Cube root of ID 0.95 0.95
r?

Medical Physics, Vol. 30, No. 7, July 2003
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Tasii: 1V. Linear correlation coefficients (Pearson’s r?) between corre- -

sponding paired views for the malignant and benign masses.

Malignant masses Benign masses

Number of masses 64 36
ID (r?) 0.90 0.92

exhibited lower correlations for the subset of masses with
high eccentricity (€).

Table IV shows the correlation of ID values between CC
and MLO views for malignant (64) and benign (36) cases,
respectively. While malignant masses generally exhibit more
irregular boundary, our experimental results showed in this
group of well-defined masses that the ID correlations were
similar (0.90 and 0.92 for malignant and benign masses, re-
spectively).

Table V shows the range of averaged ID values and cor-
relation coefficients between paired CC and MLO views
when different areas were used for background definition

“(i.e., A radius=5 mm, 7.5 mm, 10 mm, or 12.5 mm, respec-

tively). Although the ranges of ID measurements varied with
respect to background definitions, ID values were well cor-
related between the paired views in all measurements.

IV. DISCUSSION

We evaluated a quantitative measure for estimating the
“sizes” of masses as depicted in mammograms. For 100
verified masses, ID was “estimated” as the product of its
area and average linearized contrast. ID was found to be
relatively “invariant” between the two views (CC and
MLO). It was shown to be a better measure than the others
tested in this study, and in particular it is better than the other
measures for the subset of masses that are more eccentric.
When ID was transformed to a measure with a unit compa-
rable to length (by taking the cube root), its performance
increased substantially, resulting in a correlation coefficient
of r*=0.95.

Computed ID values are dependent on the segmentation
method and the definition of the surrounding background
region used. Therefore, ID remains scheme dependent. How-
ever, despite a reasonably wide distribution of mass sizes and
shapes and the background areas evaluated, our results sug-
gest that ID is reasonably invariant with respect to the image
projection (view).

TaBLE V. Range of averaged measured ID values and the corelation coef-
ficients between paired views for different background definitions.
A radius=5 mm, 7.5 mm, 10 mm, and 12.5 mm were used.

Radius difference (A radius) for background definition

5 mm 7.5 mm 10 mm 12.5 mm
Range of 40.7£43.7 44.5*47.6 48x51.6 51.2%55.7
averaged IDs
(mm*-AOD)
Correlation 0.92 0.91 0.90 0.88

(Pearson’s r?)
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Because of the presence of the mass, one can only ap-
proximate the measurement from the surrounding area using
the assumption that the normal tissue in the area of the pro-
jected mass and surrounding area are the same. This assump-
tion is but one source of error in the computed ID value that
could affect its invariance properties. This preliminary study
was intended mainly to assess the performance of ID as an
invariant measure of mass size. Hence, we included only
cases with relatively well-defined masses that were clearly
visible on both views. As a result, the reported correlation
coefficients for all measures applied to our dataset are likely
to overstate the performance of such a measure in a dataset
that includes more subtle or somewhat ill-defined cases.

The assumptions that the measure will not be significantly
affected by scatter, film gamma, and exposure factors (e.g.,
geometry, kVp, filtration, and field umformltym) seem to be
reasonable for this purpose, but the desired characteristic (in-
variance) will have to be experimentally confirmed for dif-
ferent experimental conditions.

Our findings suggest that it may be possible to achxeve a

‘relatively reproducible measure for a given mass “over“a

rather wide range of conditions and different mammographic
views. We appreciate the fact that the definition of some of
the measurements of interest in this work were simplified
and could be more accurately described. However, the intent
was to develop a relatively easy measure to compute, per-
haps at the cost of being somewhat less rigorous and precise.

V. CONCLUSION

We have developed a method for deriving a quantitative
measure of lesion “size,” termed integrated density or ID,
that was found to be reasonably invariant between paired
projection views of the same breast. Our experimental results
in a set of 100 well-defined masses demonstrated a high de-
gree of correlation between ID-based measures obtained
from ipsilateral paired views of the same breast. ID-based
measures showed a higher degree of correlation when com-
pared with other traditional s1ze -related measures, such as
mass diameter or effective size.
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Performance Change of Mammographic
CAD Schemes Optimized with Most-
Recent and Prior Image Databases’
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Rationale and Objectives. The authors evaluated performance changes in the detection of masses on “current” (latest)
and “prior” images by compute:-aided diagnosis (CAD) schemes that had been optimized witls ¢tatabases ¢ cusreat and
prior mammograms. :

Materials and Methods. The authors selected 260 pairs of matched consecutive mammograms. Each current image de-
picted one or two verified masses. All prior images had been interpreted originally as negative or probably benign. A
CAD scheme initially detected 261 mass regions and 465 false-positive regions on the current images, and 252 corre-
sponding mass regions (early signs) and 471 false-positive regions on prior images. These regions were divided into two
training and two testing databases. The current and prior training databases were used to optimize two CAD schemes with
a genetic algorithm. These schemes were evaluated with two independent testing databases.

Results. The scheme optimized with current images produced areas under the receiver operating characteristic curve of
0.89 = 0.01 and 0.65 = 0.02 when tested with current images and prior images, respectively. The scheme optimized with
prior images produced areas under the receiver operating characteristic curve of 0.81 * 0.02 and 0.71 * 0.02 when tested
with current images and prior images, respectively. Performance changes for both current and prior testing databases were
significant (P < .01) for the two schemes.

Conclusion. CAD schemes trained with current images do not perform optimally in detecting masses depicted on prior
images. To optimize CAD schemes for early detection, it may be important to include in the training database a large
fraction of prior images originally reported as negative and later proven to be positive.
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improve their diagnostic accuracy (7,8), a number of stud-
ies have demonstrated that the performance of the particu-
lar CAD scheme (including sensitivity, false-positive rate,
and reproducibility) could be important in this regard
(9-11).

Current guidelines recommend periodic mammographic
screening for women over age 40 years (12). As compli-
ance increases in the general population, a large fraction
of patients will have undergone a series of mammo-
graphic examinations. As more of the most easily de-
tected cancers are identified during the initial examination
with the incorporation of CAD into the diagnostic pro-
cess, detected breast cancers will be shifted, on average,
toward an earlier stage. In other words, more subtle can-
cers will be considered visible or detectable on routine
mammograms. This will occur also in part because of the
availability of previous images for comparison, which
could help radiologists detect more subtle cancers (13,14).
In this changing environment, it is not clear whether cur-
rent CAD schemes optimized with a large number of eas-
ily detected cancers are best suited for the detection of
earlier or more subtle cancers. This may become an im-
portant issue in developing and evaluating new CAD
schemes. In our experiment, an artificial neural network
(ANN) previously used in our own CAD scheme for mass
detection was reoptimized separately by means of mass
regions depicted on “current” images (from the most re-
cent examination, at which the mass was actually re-
ported, leading to biopsy) and those depicted on the cor-
responding “prior” images (originally interpreted as nega-
tive). Hence, two different schemes were used. The
changes in their performance were then evaluated when
they were applied to independent sets of cases with
masses depicted on both current and prior images.

MATERIALS AND METHODS

We searched our database for verified cases in which
both current and prior images had been collected and dig-
itized. Inclusion criteria required that at least one mass
had been identified by a radiologist on the current images
and that biopsy had been performed as a result. In addi-
tion, during a retrospective review and with the support
of available source documents, an experienced observer
(B.Z.) had to be able to identify a mass at the correspond-
ing locations on the prior images. In each case, the most
recent prior image had been interpreted as negative or
“not highly suspicious.”

284

As a result, 134 cases were selected for this study. The
mass was visible on both views (craniocaudal and medio-
lateral oblique) in 126 cases and on only one view in
eight cases. Hence, 260 pairs of images, with each pair
consisting of one current image and one prior image,
were included in the study. On these images 270 distinct
mass regions were identified (10 images depicted two
mass regions), 220 of which were associated with biopsy-
proved malignancy (50 were benign). The locations of all
masses depicted on current images and the corresponding
regions on prior images were visually identified as con-
firmed by the diagnostic reports and pathology results.
The centerpoint (x,y coordinate) of each verified mass
region was marked manually and saved in a reference (or
“truth”) file.

. All 520 images (260 current and 260 prior) were pro-
cessed by a CAD scheme developed previously in our ...
laboratory to identify and classify suspicious regions (15).
The scheme includes three stages. First, it uses image
subtraction and threshold results after processing by two
Gaussian filters with a large difference in kernel sizes (7
pixels and 51 pixels) to search for the initial set of suspi-
cious regions, a process that usually results in the identifi-
cation of 1030 suspicious regions per image. In the sec-
ond stage, on the basis of local contrast measurement, the
scheme uses an adaptive region growth algorithm to de-
fine three topographic layers for each region. Through the
imposition of threshold conditions of growth ratio and
shape factor for each layer in the regions identified as
potential lesions, this stage eliminates approximately 85%
of identified regions from consideration, while maintain-
ing high sensitivity. A set of features is computed for
each detected region. During the third stage, the remain-
ing regions are classified according to scores generated by
a nonlinear multilayer feature—based classifier, defining
the likelihood of there being true-positive findings in
those regions (16).

In this experiment, all remaining regions identified as
suspicious mass regions after the second stage of the
CAD scheme were selected for further consideration (the
classification scores in the third stage were ignored). As a
result, 726 suspicious regions on the 260 current images
and 723 suspicious regions on the 260 prior images were
selected. If the location of a selected region matched that
of a verified mass, the region identification was consid-
ered true-positive. Specifically, the distance between the
center of gravity of a region, as detected automatically by
the CAD scheme, and the center of the mass, as recorded
in the reference file, had to be shorter than the radius of
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Number of Suspicious Mass Regions in Each Data Set

Training Data Set Testing Data Set

True- False- True- False-
Images Positive Positive Positive Positive
Current 131 (103) 233 130 (108) 232
Prior 126 (100) 236 126 (104) 235

Note.—Numbers in parentheses indicate the regions associated
with malignant masses.

the longest axis of the detected region. Otherwise, the
region was considered a false-positive identification.

The locations of 261 of the 726 selected regions on
current images matched those of verified masses, com-
pared with 252 of the 723 regions on the prior images.
All true-positive and false-positive regions were then ran-
domly divided into four mutually exclusive data sets, two
for current images and two for prior images. To minimize
potential bias, true-positive regions of the same mass (de-
picted on craniocaudal and mediolateral oblique views)
were assigned to the same data set (either training or test-
ing), and when a mass region was assigned to the training
(or testing) subset in current images, its corresponding
regions as depicted on prior images were also assigned to
the training (or testing) subset. The Table summarizes the
number and distribution of true-positive regions and false-
positive regions in each of the four data sets.

Training data sets from the current and prior images
were used to optimize two feature-based ANNs indepen-
dently as substitutes for the third stage in our CAD
scheme (16). Previous studies have demonstrated that the
feature distributions were different for mass regions de-
picted on current images and those depicted on prior im-
ages and that different feature sets should be used for
optimal classification results (17,18). Therefore, we ap-
plied a genetic algorithm to search separately for optimal
sets of features on current images and on prior images,
using the genetic algorithm software and optimization proto-
col that had been used in our previous studies to optimize
both Bayesian belief networks (19) and ANNs (20).

In brief, a binary coding method is applied to create a
chromosome used in the genetic algorithm. Each ex-
tracted feature corresponds to a gene (that is, either to 0
or to 1). To determine the optimal number of neurons in
the second (hidden) layer of the ANN, we include four
additional genes in the chromosome. Hence, the chromo-
some has a fixed length of 40 genes, of which the first 36
represent extracted image features and the last four indi-

cate the binary-coded number of hidden neurons (eg,
0101 is the code for five hidden neurons) (20). To set up
initial parameters in the genetic algorithm software, we
included a population size of 100 and assigned the cross-
over rate, the mutation rate, and the generation gap to 0.6,
0.001, and 1.0, respectively. To minimize overfitting and
increase robustness of the ANN performance, we adopted
a limited number of training iterations (1,000}, as well as
a large ratio between the momentum (0.8) and learning
rate (0.01) in the ANN. The output of the ROCFIT soft-
ware program (University of Chicago, Ill) (21) was inter-
faced with the fitness function of the genetic algorithm,
and A, values computed by the program were defined as
fitness criteria in the genetic algorithm. The genetic algo-
rithm was terminated when it either converged to the
“highest” A, value (with no further improvement accom-

. plished in the new generation) or reached a predetermined

number of generations (eg, 100).

Using this approach, we generated two optimal ANNs,
each using a different training data set. ANN-1 was
trained with the suspicious mass regions extracted solely
from the current images, and ANN-2 was trained with
regions extracted solely from the prior images. Then we
applied each of the ANNs to the two mutually exclusive
testing data sets of regions extracted from both current
and prior images. The classification scores in each test
were used to generate four receiver operating characteris-
tic (ROC) curves. The four A, values were compared. We
defined the threshold as a false-positive detection rate
similar to that of the leading commercial CAD products—
approximately 0.4 false-positive mass regions per image
(7). At this level, we found the corresponding detection
sensitivity levels and computed the expected number of
detected true-positive regions (130 in the data set of cur-
rent images, and 126 in that of prior images). Thus, we
compared the change in expected true-positive detection
levels with the use of ANN-1 and ANN-2 for current and
prior images at an operating point currently accepted in
clinical CAD.

RESULTS

From the genetic algorithm and training data sets of
current images and of prior images, two optimal ANNs
were generated. ANN-1 included 13 features, and ANN-2
included 11 (Fig 1); four features were common to both.
Many of the features are not orthogonal, which is not
unique to our scheme. The highest A, values achieved for
the training data sets were 0.92 = 0.01 for ANN-1 and
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Figure 1. Features selected by means of the
genetic algorithm for ANN-1 and ANN-2. ANN-1 ANN-2
Those in boldface are common to both ANNs. 1. Region size (1st layer) 1. Region size (1st layer)
2. Contrast (1st layer) 2. Minimum pixel value inside the region
3. Standard deviation of pixel values 3. Size growth ratio between 2nd and 3rd
(2nd layer) layers
4. Circularity (2nd layer) 4, Skewness of pixel values (3rd layer)
5. Region size (3rd layer) 5.  Standard deviation of pixel values in
background
6. Contrast (3rd layer) 6. Region perimeter divided by size
(3rd layer)
7. Standard deviation of radial 7. Standard deviation of radial length
length (3rd layer) (3rd layer)
8. Circularity (3rd layer) 8. Circularity (3rd layer)
9. Ratio between the maximum and 9. Skewness of pixel values of
minimum radial lengths (3rd layer) background
10. Difference of minimum pixel 10. Average local pixel value fluctuation
values inside and outside of the (within a 5 x 5 frame) of the segmented
growth region (3rd layer) breast area |
11. Region conspicuity (3rd layer) 11. Region conspicuity (3rd layer)
12. Standard deviation of pixel values
(3rd layer)
13. Standard deviation of pixel values
in the segmented breast area

0.76 * 0.02 for ANN-2. When ANN-1 was applied to the 1
testing data sets, the A, values were 0.89 = 0.01 and 0.9
0.65 =+ 0.02 for current and prior images, respectively.
Figure 2 shows three ROC curves for training and two _ o8
testing results. When ANN-2 was applied to the same ‘; 0.7
data sets, the A, values were 0.81 = 0.02 for current and é
0.71 = 0.02 for prior images. Figure 3 shows the corre- &3 06
sponding ROC curves for ANN-2. 2os
The test results differed significantly (P < .01) be- e 04
tween ANN-1 and. ANN-2 for both the current and prior - % '
image testing data sets. As shown in Figure 4, A, values € 03y
were reduced by 9.0% (from 0.89 with ANN-1 to 0.81 § 0.2
with ANN-2) for the current testing data set and increased
by 9.2% (from 0.65 to 0.71) for the prior testing data set. 01
In addition, at an operating point of 0.4 false-positive de- 0 . . S . . . . .
tections per image, the sensitivity levels represented by 0 01 02 03 04 05 06 07 08 09 1
the two ROC curves in Figure 2 are 0.82 and 0.40. In False-Positive Rate (1 — Specificity)

Figure 3, the corresponding sensitivity levels are 0.68 and Figure 2. ROC curves showing the performance of ANN-1 during

0.52. If we convert these levels to an expected number of training with the current image data set (O) and during testing with
.. . the current image data set (A) and the prior image data set ().

detected true-positive mass regions, ANN-1 would detect

18 additional mass regions in the current testing data set,

while ANN-2 would detect 15 additional mass regions in yielded performance levels (4;) of 0.88 = 0.02 and

the prior testing data set. 0.63 =+ 0.02 for current and prior images, respectively;
The results are not substantially different when be- the comparable values for ANN-2 were 0.81 * 0.02
nign masses are excluded from the analysis. ANN-1 and 0.70 = 0.03.
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02 03 04 05 06 07 08 08 1
False-Positive Rate (1 - Specificity)

Figure 3. ROC curves showing the performance of ANN-2 dur-
ing training with the prior image data set (O) and during testing
with the current image data set (A) and the prior image data

set (m).

Feature-based machine learning classifiers, such as
ANNS, are widely used in CAD schemes as a final stage
in identifying and classifying abnormalities. Since these
classifiers are trained to generate a “global” function to
cover the entire instance space (22), their performance
depends heavily on the training databases. This is particu-
larly true in mammography, for which the size and diver-
sity of training data sets are often limited (23,24). Opti-
mal feature sets such as those selected by the genetic al-
gorithm could differ for different limited-size training
databases. Hence, the features selected in this study for
the current images were very similar but not identical to
those selected in our previous studies (16,18). A single
CAD scheme that achieves high sensitivity for both subtle
and relatively easy-to-detect masses at an acceptable
false-positive rate can be developed if a large and diverse
image database is available. However, the creation of
such a database is very difficult, because image features
(including texture- and morphology-based features) are
substantially different for suspicious mass regions ex-
tracted from current and prior images, as previous studies
have demonstrated (17,18).

The CAD scheme trained with the current image data
set did not perform optimally when tested with the prior
image data set, and vice versa. On the one hand, it is im-
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—
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ANN-1 ANN-2

Figure 4. Differences in area under the ROC curve (A,) for
ANN-1 and ANN-2 when tested with the current image data set
(A and the prior image data set ().

portant for a CAD scheme to detect more subtle masses,
because most radiologists can identify the easily detected
ones. On the other hand, users may lose confidence in a
scheme if it frequently misse- masses that should be easy
to detect. Without such c.....dence, radiologists will most
likely be reluctant to accept CAD cuing on subtle masses
or make any changes in their initial interpretation (8),
preventing the full benefit of CAD schemes from being
realized in clinical environments. When ANN-2, which
had been trained with the prior image data set, was tested
with the current image data set, the testing results were
better (higher A,) than the training results, demonstrating
the general robustness of the scheme (Fig 3).

Like most commercially available CAD systems, our
CAD scheme was designed to detect, not classify, suspi-
cious abnormalities. Therefore, we believe that the
scheme should be highly sensitive to all suspicious mass
regions considered “actionable” by radiologists (eg, rec-
ommended for follow-up or biopsy), even if some regions
later prove benign. One of our previous studies suggested
that radiologists’ performance in classifying abnormalities
as benign or malignant was not affected by the perfor-
mance of CAD cuing for detection purposes (11). In any
event, the inclusion of the benign mass regions as true-
positive cases in this experiment did not affect our results
and conclusions.

With improvements in diagnostic technology and in-
creasing compliance with screening recommendations
among women generally, radiologists have to detect in-
creasingly subtle abnormalities depicted on mammograms.
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As a result, the performance of a CAD system that ini-
tially provided satisfactory cuing results when optimized
could deteriorate substantialty over time. Therefore, it
may be beneficial to update training data sets periodically
and reoptimize the schemes by using a large fraction of
new cases originally rated negative and later found posi-
tive. An alternative approach could be to provide two
types of cues, one trained with current and one with prior
images (“early signs”). We believe that our experimental
results are not unique to our own image database, our
CAD scheme, or ANN-based CAD schemes but should
apply to all types of CAD schemes in which feature-
based machine learning classifiers are used.
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BACKGROUND. The authors investigated the correlation between recall and detec-
tion rates in a group of 10 radiologists who had read a high volume of screening
mammograms in an academic institution.

METHODS. Practice-related and outcome-related databases of verified cases were
used to compute recall rates and tumor detection rates for a group of 10 Mam-
mography Quality Standard Act (MQSA)-certified radiologists who interpreted a
total of 98,668 screening mammograms during the years 2000, 2001, and 2002. The
relation between recall and detection rates for these individuals was investigated
using parametric Pearson (r) and nonparametric Spearman (rho} correlation co-
efficients. The effect of the volume of mammograms interpreted by individual
radiologists was assessed using partial correlations controlling for total reading
volumes.

RESULTS. A wide variability of recall rates (range, 7.7-17.2%) and detection rates
(range, 2.6-5.4 per 1000 mammograms) was observed in the current study. A
statistically significant correlation (P < 0.05) between recall and detection rates
was observed in this group of 10 experienced radiologists. The results remained
significant (P < 0.05) after accounting for the volume of mammograms interpreted
by each radiologist.

CONCLUSIONS. Optimal performance in screening mammography should be eval-
uated quantitatively. The general pressure to reduce recall rates through “practice
guidelines” to below a fixed level for all radiologists should be assessed carefully.
Cancer 2004;100:1590-4. © 2004 American Cancer Society.

KEYWORDS: mammography, screening, tumor detection rates, recall rates.

As periodic mammographic screening is rapidly gaining accep-
tance, our understanding of many strategic, operational, and fi-
nancial issues related to this practice is improving as well. Several
performance indices have been used to define “optimal” practice
parameters in screening mammography. These include, but are not
limited to, sensitivity, specificity, positive predictive value (PPV), and
cost per detected tumor."”* Clearly, the focus of screening for early
detection should primarily be on improved sensitivity. At the same
time, the large number of patients being recalled for additional pro-
cedures as a result of an initial review is a recognized problem for the
very same reasons (operational and financial), with the added con-
cern of the well documented increase of anxiety levels in women who
are recalled.>* Therefore, there is a belief that through a variety of
actions including but not limited to specific and targeted training, one
can augment observer performance levels, including the reduction of
recall rates in screening mammography.>® Although not specifically

Published online 8 March 2004 in Wiley InterScience (www.interscience.wiley.com).
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regulated, there is a publicly stated goal to reduce
recall levels to < 10%.>” The question of what effect, if
any, does a forced reduction in recall rates have on
detection rates remains somewhat controversial.
Some studies suggest that recall and detection rates
are not highly correlated (particularly at high recall
rates); hence, a reduction in the former does not nec-
essarily affect the latter.®® Other researchers believe
that, after appropriate training, highly experienced ra-
diologists individually operate largely along a single
receiver operating characteristic curve; hence, pres-
suring them to reduce their recall rate may result in a
corresponding reduction in the detection rates as
well.?® Because of the well documented variability
among radiologists, the latter effect and its possible
magnitude have to our knowledge been investigated
only recently.'®~*? This type of an investigation is not
easy to perform, because the expected yield (detection
of actually positive cases that result from the screen-
ing) has been reported to be quite low in a population
of women who already have been screened in the
past.’*!® Therefore, one generally needs to evaluate
detection rates from the data of large groups of indi-
vidual radiologists pooled together or have access to
sufficient data from radiologists who each have inter-
preted a large number of mammograms. In this arti-
cle, we present an analysis of the latter type of inves-
tigation.

MATERIALS AND METHODS

Screening mammography examinations performed in
the study facilities at Magee-Womens Hospital (of the
University of Pittsburgh Medical Center) and its five
satellite breast imaging clinics during the years 2000,
2001, and 2002 were reviewed under an Institutional
Review Board-approved protocol. Mammograms that
had been interpreted by the 10 highest volume mam-
mographers at the study institution during this period
were included in the current study.

The data sources used in the current analysis were
databases of procedure scheduling, procedure com-
pletion, radiology reporting, and procedure-related
outcomes as determined from pathology reports.
These databases have been assembled from original
reports for several reasons, including quality assur-
ance purposes that are required by the Mammography
Quality Standard Act (MQSA).’®'” The computerized
reporting system and data entry protocols used in our
practice remained the same throughout the study pe-
riod. Because the number of positive findings leading
to the detection of tumors by each individual were
low, the records of all mammograms read by each of
the participating radiologists “with” and “without” the
availability of results from a commercial Computer-
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Assisted Detection (CAD) system were pooled for the
purpose of this analysis. Our clinical practice for
screening mammography during this period was film
based, and most screening mammograms were read at
the main facility in a batch mode. We included in the
current analysis the results from the interpretations of
the 10 highest volume radiologists in our practice,
most of whom were with the study institution
throughout much of the period in question. Each has
performed > 3500 interpretations of screening mam-
mography examinations.

Recall rates for each radiologist were computed
directly from mammography interpretation records
(Breast Imaging Reporting and Data System Atlas [BI-
RADS® Atlas; American College of Radiology, Reston,
VA] rating of 0). We excluded recommendations for
recall due to technical reasons (“technical recalls”).
These account for approximately 1% of cases. How-
ever, recalls resulting from palpable findings during
clinical breast examinations were included because
the majority of these findings also were depicted in the
mammograms. These findings amount to < 1% of
examinations; therefore, the underlying rates attribut-
able to mammography interpretations alone are ac-
cordingly somewhat lower than those reported in the
current study. The effect of “palpable” findings on
individual radiologists is expected to be distributed
proportionally to their overall volume.

In our practice, the interpretation of some exam-
inations (< 4%) is delayed because of missing com-
parison films during the initial interpretation. These
generally are distributed proportionally to the volume
read by each radiologist and are included in the recall
rates because it is not clear how many of these cases
would have been actually recalled in any case.

Tumor detection rates were computed as follows.
We identified the latest screening examination for
each detected tumor that resulted in a diagnostic fol-
low-up (recall) and ultimately resulted in pathologi-
cally verified carcinoma. The radiologist who inter-
preted the screening mammogram that led to the
detection of breast carcinoma was credited with the
finding for the purposes of the current analysis. Cases
were excluded from the analysis if the latest screening
mammogram prior to biopsy had been performed
> 180 days earlier. In our experience, these women
generally are “lost” to follow-up at other institutions
or ignore the recommendations for a diagnostic
workup (recall) altogether. Cancer patients who were
referred to us from other facilities and for whom the
diagnosis did not originate from a screening examina-
tion in one of our facilities were excluded. Women
who originally were presented as screening proce-
dures but were diagnosed using additional radio-
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graphic procedures or other modalities (e.g., ultra-
sound) during the same visit (“conversion” cases from
screening to diagnostic) were accounted for and were
included in the current analysis. However, because a
substantial number of these may originally have been
identified as “potentially abnormal” by a technologist
(who personally shows the case to a radiologist) dur-
ing a quality assurance review of the images, we re-
peated the analysis after excluding this group of cases.
For the purpose of these analyses, we assume that any
effect due to the performance level of the radiologists
who were performing and interpreting the diagnostic
procedures during the follow-up visit are distributed
in a manner that does not affect the study conclu-
sions. The radiologists could not select the examina-
tions they interpreted in our practice.

The correlation between recall and detection rates
was evaluated using both the parametric Pearson (1)
and the nonparametric Spearman (rho) correlation
coefficients. We also examined the results after partial
correction for the total volume of mammograms in-
terpreted by each radiologist during the period in
question.

RESULTS

Recall and detection rates for the 10 radiologists
whose data were analyzed in the current study were
computed. Each performed > 3500 interpretations
(range, 3605-16,128 interpretations) during the pe-
riod in question. We were unable to publish detailed
information for individual radiologists without pro-
viding individually traceable data because each staff
radiologist is aware of the approximate volume of
screening examinations they interpreted and their
approximate recall rate. These 10 radiologists inter-
preted a total of 98,668 cases during this time and
detected 368 cases of carcinoma. Twenty-six “con-
version” cases were included in the analysis. These
cases originally were presented as a screening pro-
cedure but the patients underwent “follow-up” pro-
cedures (e.g., ultrasound) during the same visit (be-
cause of a physician being present on site at the
time of the visit). A wide range of recall rates (range,
7.7-17.2%) and detection rates (range,2.6-5.4 per
1000 mammograms) was observed. Despite the low
number of radiologists (10), when recall and detec-
tion rates were compared using the parametric
Pearson (r) correlation coefficient, the correlation
between the recall and detection rates was signifi-
cant (r = 0.76; P = 0.01). Similarly, a significant
correlation was observed in the group of radiologists
using the nonparametric Spearman correlation co-
efficient (rho = 0.72; P = 0.02). A linear least square
fit between the recall and detection rates for the
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FIGURE 1. A linear fit of detection rates as a function of recall rates for the
10 radiologists in the current study.

group in which each radiologist represents a single
“operating point” is presented in Figure 1. Despite
significant interreader variability, the slope indi-
cates an average of 0.22 additional detections per
1% increase in recall rates (95% confidence interval
on the slope is +0.068 to +0.378). The correlation
between recall and detection rates remained signif-
icant (P < 0.05) after accounting for the total vol-
ume read by each radiologist using partial correla-
tions. Repeated analyses after the exclusion of the
26 “conversion” cases indicated no substantial dif-
ference in the correlations reported herein. The cor-
relations remained significant when the analysis
was repeated for the 7 (P = 0.05), 8 (P < 0.05), and
9 (P < 0.05) highest volume radiologists. These re-
sults demonstrate that, in general, in our practice,
the higher the recall rates, the higher the detection
rates. This increase in detection rate was found to
persist over the range of observed recall rates and
extended beyond the currently recommended prac-
tice guideline of 10%. ‘

DISCUSSION

There is little doubt that continuing education and
training are important factors in the ability of radi-
ologists to be consistent in interpreting mammo-
grams and to improve their overall performance.
However, to our knowledge, there are no conclusive
data published to date regarding to what extent
improvement continues beyond a certain level of
training or experience.'? Although there are ques-
tions with regard to whether volume and experience
affect performance,'? the general belief has been
that one can reduce recall rates relatively easily
without a significant impact on detection rates. As a
result, there is an ongoing significant effort to do so,
particularly in practices similar to ours with recall
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rates that are in the higher range (= 10%). PPV as a
result of screening has been of great interest as one
of the indicators of the performance level of radiol-
ogists in this area.® However, if sensitivity is affected
by recall rates, particularly in a group of well
trained, high-volume radiologists whose recall rates
are relatively high, the fundamental question of
whether to continually pressure them to reduce
their recall rates following currently accepted prac-
tice guidelines remains. This stems from the fact
that the detection of “earlier tumors” with higher
recall rates may be as or perhaps more important
than actually reducing the recall rates or improving
the PPV somewhat. It is interesting to note that an
important review of several related issues suggested
observations that were similar to those of the cur-
rent study.'® Unfortunately, to our knowledge the
radiology community has not objectively addressed
this potentially important matter to date.

Similar to the findings reported by Yankaskas et
al.?, the results of the current study suggest that de-
tection rates generally are affected by recall rates in
the lower range. However, unlike the observations of
Yankaskas et al.,? the effect in our group of 10 highly
trained radiologists, who individually read a reason-
ably high volume of mammograms, persisted over the
entire range of observed recall rates (as high as 17%).
In the higher range of recall rates (= 7%), Yankaskas et
al.® showed no correlation between the recall and
detection rates. Therefore, their results could suggest
that, in this critical range, a reduction in recall rates
should not affect the detection rates. It is possible that
this difference arises from the fact that the current
study took place in a “reasonably stable” screening
population in whom the majority of “prevalence (or
“baseline”) carcinomas” had been detected already.
Another possible explanation may be the number of
mammograms interpreted by individual radiologists
in the two studies. Clearly, more data are needed in
this regard.

The total number of mammography screening in-
terpretations by the radiologist with the lowest screen-
ing volume reported herein over a 3-year period was
relatively low. However, our regionwide referral base
was found to result in a large number of other diag-
nostic and interventional breast-imaging procedures
that typically amount to approximately 50% of the
screening examinations. Hence, our radiologists
should be considered as “specialists” in breast imag-
ing.

It should be noted that in our practice the average
recall rates (=11 percent) are generally relatively high
compared with some reports,'®!° and they are in bet-
ter agreement with, and in some cases lower than,
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others.’®?*2! We have no simple explanation for this
observation. The results of the current study are in
agreement with the findings of Beam et al.'? and oth-
ers in that there is a large variability in the perfor-
mance of the radiologists in this area. We did not
detect a significant correlation between the volume
read by the individual radiologists during the period in
question and their performance level, although the
radiologists in the current study all can be considered
high volume, “well trained” readers with significant
experience. There are several arguments one can raise
with regard to why the estimated recall and detection
rates in the current study may not be precise in terms
of absolute values. These include but are not limited
to the inclusion of palpable cases and incomplete
follow-up of cancer patients who may be lost to other
institutions. The fact that our primary area of interest
is the relative performance levels of the radiologists
(rather than absolute} makes the results valid despite
these limitations, as long as one does not bias the
interpretation process by selectively assigning a spe-
cific subset to be interpreted by one radiologist or
another (e.g., all “high risk” women or all examina-
tions of women with dense breasts are assigned to
“conservative” or “high-volume” radiologists). This
was clearly not the case in our practice. Therefore, one
would expect that any related corrections as a result of
these limitations would be largely proportional to the
volume of cases interpreted by each radiologist in the
course of their routine clinical practice. The correla-
tion between detection rates and outcome or even
“average stage of disease ” at the time of detection is
beyond the scope of this project because the number
of tumors detected by an individual radiologist was
too small and the follow-up time after detection too
short to meaningfully assess differences, if any, in
outcome.

The results of the current study suggest that be-
fore we unilaterally pressure radiologists to reduce
their recall rates because of a notion that this will
improve our practices (and reduce overall manage-
ment costs), we need to carefully evaluate the impact
such an effort may have on early (and perhaps even
“earlier”) detection. If we believe that screening
should focus primarily on maximizing early detection,
and the earlier the better, one has to consider whether
there may be an individualized optimal operating level
that should be considered, rather than a “globally”
recommended practice guideline of a maximum “ac-
ceptable” recall rate that applies to all screening mam-
mographers. This view may be supported by women
who appear to strongly prefer a small increase in de-
tection rates, even at the expense of higher recall rates
and the associated impact in terms of cost and added
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anxiety.?>?* The current limited study included a
group of 10 academic radiologists practicing at 1 in-
stitution under 1 set of practice conditions. Clearly,
more data are required before one can generalize the
findings reported herein to the population of radiolo-
gists who interpret screening mammography in this
country. At the same time, the number and type of
examinations used in the current analysis may be
generalizable to the screening population in a large
number of academic practices around the U.S.

Conclusions

The performance level of a radiologist in the screening
environment is a complex, multifactorial issue that
cannot and should not be simplified. Reducing recall
rates by “decree” (through the enforcement of recom-
mended practice guidelines) may result in a corre-
sponding reduction in the detection rates, hence the
associated delays. The impact of external pressure on
individual radiologists to reduce their recall rates
should be evaluated carefully.
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APPENDIX 7

Changes in Breast Cancer Detection and Mammography
Recall Rates After the Introduction of a Computer-

Aided Detection System

David Gur, Jules H. Sumkin, Howard E. Rockette, Marie Ganott, Christiane
Hakim, Lara Hardesty, William R. Poller, Ratan Shah, Luisa Wallace

Background: Computer-aided mammography is rapidly
gaining clinical acceptance, but few data demonstrate its
actual benefit in the clinical environment. We assessed
changes in mammography recall and cancer detection rates
after the introduction of a computer-aided detection system
into a clinical radiology practice in an academic setting.
Methods: We used verified practice- and outcome-related
databases to compute recall rates and cancer detection rates
for 24 Mammography Quality Standards Act-certified aca-
demic radiologists in eur practice who interpreted 115 571
screening mammograms with (n = 59 139) or without (n =
56 432) the use of a computer-aided detection system. All
statistical tests were two-sided. Results: For the entire group
of 24 radiologists, recall rates were similar for mammograms
interpreted without and with computer-aided detection
(11.39% versus 11.40%; percent difference = 0.09, 95%
confidence interval [CI] = —11 to 11; P = .96) as were the
breast cancer detection rates for mammograms interpreted
without and with computer-aided detection (3.49% versus
3.55% per 1000 screening examinations; percent difference
= 1.7, 95% CI = —11 to 19; P = .68). For the seven
high-volume radiologists (i.e., those who interpreted more
than 8000 screening mammograms each over a 3-year pe-
riod), the recall rates were similar for mammograms inter-
preted without and with computer-aided detection (11.62%
versus 11.05%; percent difference = —4.9,95% CI = —21to
4; P = .16), as were the breast cancer detection rates for
mammograms interpreted without and with computer-aided
detection (3.61% versus 3.49% per 1000 screening examina-
tions; percent difference = —3.2,95% CI = —15t0 9; P = .54).
Conclusion: The introduction of computer-aided detection
into this practice was not associated with statistically signif-
icant changes in recall and breast cancer detection rates,
both for the entire group of radiologists and for the subset of
radiologists who interpreted high volumes of mammeograms.
[J Natl Cancer Inst 2004;96:185-90]

A mounting body of evidence suggests that early detection of
breast cancer through periodic mammography screening reduces
the morbidity and mortality associated with this disease (/,2).
Mammography screening is rapidly gaining acceptance world-
wide, and the number of mammography procedures performed
continues to increase (3,4). However, mammography screening
has a relatively low cancer detection rate of only two to six
cancers per 1000 mammograms after the first 2 years of screen-

ing (5).
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The performance levels among radiologists who read and
interpret mammograms vary widely. Several factors may ac-
count for this variability. These include, but are not limited to,
the low incidence of breast cancer, the difficulty in identifying
suspicious (i.e.; potentially malignant) regions in the surround-
ing breast tissue, and the tedious and somewhat repetitious
nature of the task of reading mammograms (5-7).

In recent years, a major effort has been expended to develop
computer-aided detection systems to assist radiologists with the
diagnostic process. The hope is that these computer-aided de-
tection systems will improve the sensitivity of mammography
without substantially increasing mammography recall rates, in
addition to possibly decreasing inter-reader variability. These
systems are intended for the early detection of breast cancer and,
accordingly, are designed to assist the radiologist in the identi-
fication (i.e., detection) of suspicious regions (i.e., findings),
such as clustered microcalcifications and masses (8-10).
Computer-aided diagnosis (discrimination) systems are cur-
rently being developed to help radiologists determine whether an
identified suspicious region is likely to represent a benign or a
malignant finding (11-13).

The U.S. Food and Drug Administration (FDA) has approved
several computer-aided detection systems for clinical use, and
Medicare and many insurance companies have approved reim-
bursement for the use of these systems in clinical practice. The
initial FDA approval process for these systems included retro-
spective interpretations of select groups of cases in a laboratory
environment (9,14,15). Results of these studies (9,15) suggest
that the use of computer-aided detection systems can potentially
increase cancer detection rates by approximately 20% without
substantially increasing recall rates. However, there are only
limited data on the impact of such systems when used prospec-
tively in a clinical environment (16-19). We used large, pro-
spectively ascertained databases to evaluate the recall and cancer
detection rates in our clinical breast imaging practice in an
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academic setting for a 3-year period during which a computer-
aided diagnosis system was introduced.

METHODS
Subjects and General Procedures

All screening mammography examinations performed in our
facilities at Magee-Womens Hospital of the University of Pitts-
burgh Medical Center (Pittsburgh, PA) and its five satellite
breast imaging clinics during 2000, 2001, and 2002 were in-
cluded in this study. Our study was carried out under an insti-
tutional review board—approved protocol.

The data sources for our analysis were databases that con-
tained information on procedure scheduling, procedure comple-
tion, radiology reporting, and procedure-related outcomes as
determined from relevant pathology reports. These databases
were assembled from the original reports for quality assurance
purposes, as required by the Mammography Quality Standards
Act (MQSA) (20), among other reasons. The same computerized
reporting system was in use throughout the study period.

In the second quarter of 2001, we introduced a computer-
aided detection system (R2 Technologies, Los Altos, CA) into
our clinical practice at the main facility, where most of the
screening mammograms in our practice were read in batch
mode. By the third quarter of 2001, more than 70% of the
screening mammograms were interpreted with use of the
computer-aided detection system. By the fourth quarter of 2001,
more than 80% of the screening mammograms were interpreted
with the assistance of the computer-aided detection system. The
radiologists in our practice could not select which mammograms
would be interpreted with or without the computer-aided detec-
tion system. After training on the computer-aided detection
system was completed (June 2001), all screening mammograms
interpreted in our main facility were processed by and inter-
preted with the assistance of the computer-aided detection sys-
tem. Radiologists at the five satellite clinics sometimes reviewed
screening mammograms if time allowed, but the number of these
cases was small, and there was no selection process that could
bias the analyses performed in this study. Knowing the schedule
for radiologists’ presence at the remote sites, we assembled a
batch of serially acquired mammograms for them to read in the
same way they would be read at the central facility, and those
mammograms were interpreted and reported in the same manner
(with the exception of the use of computer-aided detection). This
set of mammograms was not specifically selected because of
suspicious findings by the technologists. To reduce possible
biases, an individual not involved in this investigation was asked
to examine summaries of time-dependent recall rates for all
radiologists in our practice for the study period. A different team
examined all cancers detected throughout our practice as a result
of screening mammography during the same period.

During the study period, our practice performed a total of
115 571 screening examinations that were interpreted by 24
radiologists, 18 of whom interpreted more than 1000 mammo-
grams each. All radiologists were members of the Breast Imag-
ing Section of the Department of Radiology and would be
considered breast imaging specialists in an academic practice.
We also repeated our analysis by using only data for the seven
highest volume radiologists, all of whom read more than 8000
mammograms each over a 3-year period. These seven radiolo-
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gists, who were with our institution throughout the study period,
performed the most readings, both with and without computer-
aided detection assistance.

For the purpose of computing recall rates, mammograms
were considered to be positive if recall for additional imaging
evaluation was recommended (i.e., mammograms classified as
Breast Imaging Reporting and Data System [BI-RADS] cate-
gory 0) and negative if a 1-year follow-up was recommended
(i.e., mammograms classified as either BI-RADS category 1 or
2) (21). Radiologists at these facilities did not use BI-RADS
assessment categories 3, 4, or 5 for screening examinations.
Positive outcome was defined as breast cancer detected as a
result of the diagnostic work-up initiated by a positive screening
mammogram.

Computation of Mammography Recall Rates

Recall rates for each radiologist and for the group of 24
radiologists were computed directly from mammographic inter-
pretation records. In all of our analyses, we excluded recom-
mendations for recall that were due to technical reasons, such as
image artifacts (<1%). Recalls due to palpable findings identi-
fied during clinical breast examinations performed on all women
by the technologist were included in our analyses because the
majority of these findings were also marked on the mammo-
grams. Such recalls amounted to approximately 1% of the
screening examinations; hence, the underlying rates attributable
to mammography interpretations alone are approximately 1%
lower than those reported here. The women in this group of
recalls are not the same as the group of women with palpable
findings discovered by the woman herself or by a physician
during a breast physical examination. Women in the latter group
were scheduled for diagnostic examinations and were not in-
cluded in our study. In our practice, palpable findings that are
discovered by the technologists are noted during the physical
examination and the procedure continues as a screening exam-
ination (including the use of computer-aided detection). The
interpreting radiologists are aware of the technologists’ findings
and recall the women for additional procedures as needed. We
recognize that this practice may not be a common one. We
assumed that the effects of recalling this group of women due to
palpable findings, if any, on the recall rates of individual
radiologists would be proportional to the overall volume of
mammograms read by each radiologist; hence, it should not
substantially affect the results.

A small percentage (<4%) of the examinations in our prac-
tice classified as BI-RADS category 0 were scheduled for an
interpretation at a later date because the needed comparison
films were missing during the originally scheduled interpreta-
tion. Those cases were distributed proportionally to the volume
of mammograms read by each radiologist and were included in
the recall rates because it was not clear how many of them would
have been recalled anyway. .

Each mammography examination was identified in our data-
base as to whether computer-aided detection was used during the
interpretation. We therefore analyzed the data according to
whether cases were interpreted with computer-aided detection.

Computation of Breast Cancer Detection Rates

Breast cancer detection rates were computed as follows: For
every breast cancer detected, we found the most recent screening
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mammogram that identified a finding that led to a diagnostic
follow-up and ultimately resulted in a biopsy that was positive
for cancer. Only the interpreter of the original screening mam-
mogram that led to the detection of breast cancer was credited
with the finding (i.e., invasive and ductal carcinoma in situ).
Findings of lobular carcinoma in situ were not attributed to the
interpreting radiologist as a cancer detected in the analyses. If a
woman was recommended for a biopsy directly as a result of
the screening examination, the interpreter was credited with
the finding as well. Cases were excluded from the analysis if
the most recent screening mammogram prior to biopsy had
been performed more than 180 days before the biopsy or if
the original interpreter had not recommended a recall (i.e.,
false-negative cases). We chose a cutoff of 180 days because
we have found that, in the vast majority of cases, women are
lost to follow-up or ignore the recall recommendation alto-
gether if the recommended follow-up diagnostic procedure is
not scheduled within 90 days or performed within 180 days of
the original mammogram. We attributed any subsequent find-
ings associated with recalls for diagnostic work-ups that did
not take place within 180 days of the original mammogram to
the subsequent examination. We included all examinations
that that had been originally scheduled as screening proce-
dures but were diagnosed during the same visit and during
which a diagnosis was made that resulted in a positive out-
come (i.e., converted into a diagnostic procedure that led to a
finding of cancer). However, these cancer cases (n = 30) were
excluded from the computed breast cancer detection rates in
our analysis (both nominator and denominator) because they
were all diagnosed by a radiologist without the use of
computer-aided detection, and we therefore could not deter-
mine whether these cases would have been detected had they
undergone routine interpretation (with or without computer-
aided detection) as a routine screening procedure. In addition,
all breast cancer patients who were referred to us from other
facilities and for whom the diagnosis did not originate from a
screening examination done at one of our facilities were
excluded from the analysis.

Statistical Methods

Recall and detection rates with and without computer-aided
detection were compared by using a generalized estimating
equations (GEE) logistic regression model that accounts for
clustering of findings within each reader (22). In addition, we
asked an independent team of investigators to evaluate the
numbers of cancer cases that were detected with and without
computer-aided detection by the type of abnormality(s) noted in
the original report. Those findings were assigned to one of the
following categories: 1) mass(es) only; 2) clustered microcalci-
fications only; 3) mass(es) and clustered microcalcifications; and

4) other findings. Because the performance levels of computer-
aided detection systems are generally outstanding for detecting
microcalcifications (16), we used the GEE model to analyze our
findings with respect to possible changes in the percentage of
cancer detections attributable to microcalcification clusters as-
sociated with the use of computer-aided detection. In addition,
all analyses were repeated using a mixed-effect logistic regres-
sion model in which readers were considered a random effect,
and modality (i.e., with or without computer-aided detection)
was considered a fixed effect (23). We also examined data from
the seven high-volume radiologists (i.e., those who interpreted
more than 8000 mammograms each during the study period).
Because of the serial nature of the analysis (namely, this was not
a randomized study), we repeated the analyses with respect to
the timing of the major use of computer-aided detection in our
practice by comparing the results for all cases interpreted with-
out computer-aided detection from January 1, 2000, through
June 30, 2001, when computer-aided diagnosis was used in only
a small percentage of cases (<0.2%) at our facilities, with results
for all cases interpreted with computer-aided detection from
October 1, 2001, through December 31, 2002, when most
(>93%) of the cases at our facilities were interpreted with
computer-aided detection. All statistical tests were two-sided.

RESULTS

The mean age of the screened population (n = 115 571)
during the study period was 50.05 years (standard deviation =
11.17 years). During the study period, the percentage of women
who were screened for the first time gradually decreased from
approximately 40% in 2000 to 30% in the last quarter of 2002,
whereas the percentage of women who had repeated screenings
gradually increased.

Table 1 summarizes our data for the 24 radiologists who
interpreted screening mammograms at our facility with and
without the use of a computer-aided detection system. Among
the 115 571 examinations in our database, 56 432 (48.8%) were
interpreted without the use of the computer-aided detection
system and 59 139 (51.2%) were interpreted with the use of the
computer-aided detection system. Recall rates for the entire
group of 24 radiologists were 11.39% for mammograms inter-
preted without computer-aided detection and 11.40% for mam-
mograms interpreted with it (percent difference = 0.09, 95%
confidence interval [CI] = —11 to 11; P = .96). Recall rates for
the 18 radiologists who interpreted more than 1000 mammo-
grams each during the study period ranged from 7.7% to 17.2%
(data not shown). Recall rates for the seven high-volume radi-
ologists who interpreted more than 8000 mammograms each
during the study period ranged from 7.7% to 14.9% (data not
shown). Among this latter group of radiologists, there was no

Table 1. Mammography recall rates and breast cancer detection rates for 24 radiologists performing screening mammograms without and with
computer-aided detection*

No. of No. of No. of breast Recall Breast cancer detection rate
Type of interpretation mammograms read recalls cancers detected rate, % per 1000 mammograms read
Without computer-aided detection 56 432 6430 197 11.39 3.49
With computer-aided detection 59139 6741 210 11.40 3.55
Total 115571 13171 407 11.40 3.52
*The analysis excluded 30 conversion (screening to diagnostic) cancer cascs. all of which were interpreted without computer-aided detection.
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statistically significant correlation (tho = —0.21, P = .64)
between recall rate and the total number of screening mammo-
grams interpreted by individual radiologists. In our practice,
approximately 3.0% of the cases recommended for recall are
typically lost to follow-up because the woman either undergoes
re-screening at another institution or ignores our recommenda-
tions. This group remained relatively constant as a percentage of
recalled women over the period in question.

Table 2 summarizes our data for the seven high-volume
radiologists who interpreted more than 8000 screening mam-
mograms each with and without the use of a computer-aided
detection system. During the study period, these radiologists
interpreted a total of 82 129 screening mammograms and
were credited with the detection of 292 breast cancers as a
result of these screening procedures. In this group, the recall
rates decreased from 11.62% for mammograms interpreted
without computer-aided detection to 11.05% for mammo-
grams interpreted with computer-aided detection (percent dif-
ference = —4.9, 95% CI = =21 to 4; P = .16).

Breast cancer detection rates for the entire group of 24
radiologists were 3.49 per 1000 screening examinations for
mammograms interpreted without computer-aided detection and
3.55 per 1000 screening examinations for mamimograms inter-
preted with it (percent difference = 1.7, 95% CI = —11 to 19;
P = .68) (Table 1). Breast cancer detection rates for the seven
high-volume radiologists were 3.61 per 1000 screening exami-
nations for mammograms interpreted without computer-aided
detection and 3.49 per 1000 screening examinations for mam-
mograms interpreted with computer-aided detection (percent
difference = —3.2,95% CI = ~15t0 9; P = .54) (Table 2).

The cancer detection rates associated with recalls due to the
detection of clustered microcalcifications alone were 1.35 per
1000 mammograms interpreted without computer-aided detec-
tion and 1.44 per 1000 mammograms interpreted with computer-
aided detection (P = .66) (data not shown). We observed no
trend in breast cancer detection rates over time when we re-
viewed average detection rates for all 24 radiologists by calendar
quarter (data not shown). We repeated our analyses using a
random-effects logistic regression model and found that there
were no statistically significant changes in recall rates or detec-
tion rates for all measurements presented above. Our results
were not substantially affected when we compared only mam-
mograms interpreted without computer-aided detection prior to
July 1, 2001, with only those interpreted with computer-aided
detection after October 1, 2001.

DISCUSSION

The introduction of computer-aided detection into our prac-
tice was not associated with statistically significant changes in
recall and breast cancer detection rates for the entire group of
radiologists as well as for the subset of seven radiologists who

¢ b

interpreted high volumes of mammograms. The magnitudes of
the improvements we observed were substantially less than
those reported in the literature as the range of possible improve-
ments based on retrospective analyses and limited prospective
data (9,17,18). The improvements we observed may be attrib-
utable to the better detection of clustered microcalcifications
associated with malignancy. Our findings are consistent with the
range of improvement in detection rates estimated and reported
by others (9,16—18). However, our large confidence intervals
reflect the relatively low number of breast cancers detected with
and without computer-aided detection and the large inter-reader
variability among the radiologists in our practice. Because there
were no repeat measures in this database—that is, each of the
examinations was interpreted only once by one radiologist—we
could not assess intra-reader variability.

It should be noted that we could not provide detailed infor-
mation for individual radiologists without providing individually
traceable data because each staff radiologist knows his or her
reading volume and approximate recall rate. Our data are not
adjusted for any learning effect: namely, the majority of inter-
pretations made without computer-aided detection occurred
chronologically prior to those made with computer-aided detec-
tion. We also did not account for any effect that may have
resulted from a continuous effort to improve performance (in
particular, sensitivity) by group reviews of all false-negative
cases or from the steps undertaken to reduce recall rates through
various actions, such as monthly performance reviews and direct
consultation with interpreters who had higher-than-average re-
call rates.

Although one could argue that some or all of the reduction in
recall rates we observed for the high-volume radiologists may be
attributable to the use of computer-aided detection, the corre-
sponding decrease in cancer detection rates we observed among
the radiologists in this group is not easily explained by expected
practice variations. An assessment of whether the small im-
provement we observed in cancer detection is due to learning
effects—namely, that our radiologists had substantially more
overall experience interpreting mammograms without computer-
aided detection than with computer-aided detection—is beyond
the scope of this investigation.

This investigation covered a period during which conven-
tional film mammography was performed in all of our screening
procedures. Hence, we cannot comment on the possible effect of
computer-aided detection in a digital mammography environ-
ment. In our study, we did not account for women who had
decided to follow up on our recommendations elsewhere. How-
ever, because compliance in patient follow-up was relatively

constant during the study period, any bias in the results due to -

changes in patient loss to follow-up is likely to be small.
There are limited reported data concerning the actual effect of
computer-aided detection on breast cancer detection and mam-

Table 2. Mammography recall rates and breast cancer detection rates for the seven high-volume radiologists performing screening mammograms without and
with computer-aided detection

No. of No. of No. of breast Recall Breast cancer detection rate
Type of interpretation mamimograms read recalls cancers detected rate, % per 1000 mammograms read
Without computer-aided detection 44 629 5188 161 11.62 3.61
With computer-aided detection 37 500 4145 131 11.05 3.49
Total 82129 9333 292 11.36 3.56
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mography recall rates. The prospective data reported by Freer
and Ulissey (16), which suggested a substantial improvement
(19.5%) in breast cancer detection rates associated with the use
of computer-aided detection systems, may have been affected by
the fact that the results of mammographic interpretations without
and with computer-aided detection were reported on the same
cases (i.e., mammograms were read in one sitting, first without
computer-aided detection then immediately afterward with the
use of a computer-aided detection system). Another prospective
study performed in a similar manner reported a 12% improve-
ment in detection rates associated with the use of a computer-
aided detection system (/8). This type of protocol, namely
reading mammograms without computer-aided detection fol-
lowed immediately by readings of the same mammograms with
the use of a computer-aided detection system and a reassessment
of the original finding without computer-aided detection, may
have introduced a lower level of vigilance among radiologists
during the initial interpretation without computer-aided detec-
tion, because they knew that computer-aided detection would be
available to them for the final recommendation and that the
initial interpretation did not constitute a formal clinical
recommendation.

Results of the only study similar to ours, albeit on a substan-
tially smaller group of patients and under a different set of
circumstances, suggested that computer-aided detection was as-
sociated with a 13% improvement in breast cancer detection
rates (17). One of the advantages of the approach taken in our
investigation is that the radiologists’ interpretations were per-
formed and recorded prospectively in a clinical setting and data
were collected primarily for quality-assurance purposes (24).

Our results for the interpretations made with computer-aided
detection may be marginally biased because the outcomes of as
many as nine recommendations for recalls and three recommen-
dations for biopsies during the last quarter of 2002 are not yet
available. Although some of these follow-up procedures or bi-
opsies may ultimately be performed at our institution, we as-
sume that the women who underwent the original mammograms
have been lost to follow-up. However, on the basis of our typical
recall-to-cancer-detection ratios (approximately 1 of 32 cases)
and biopsy-to-confirmed cancer ratios (approximately 1 of 5
cases), we suspect that this bias would not substantially affect
our findings or conclusions. It is possible that the gradually
increasing fraction of women who had prior screening exami-
nations created a bias in our results. Repeat screening examina-
tions have a slightly lower number of cancers present as more
are detected during the first screen, and on average, cancers
detected on repeat mammograms may be more “difficult” to
detect because more of the “easier” (e.g., larger) cancers are
detected during the initial screen. Repeat mammograms have a
lower recall rate, as the radiologists have prior films for com-
parison, to help inform their decision. The availability of prior
examinations for comparison (in the repeat examinations)
should have aided in the interpretation of these mammograms
and offset the possible effect (if any) on the interpretations due
to an increase in the “average case difficulty.” The fact that our
recall rates and detection rates remained virtually constant over
time suggests that the possible bias due to a gradual increase in
repeat examinations is not a statistically significant factor. We
suspect that this increasing availability of prior examinations for
comparison is a general phenomenon that is observed by most
mammography screening practices and that there is not a simple
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way to account for it in an analysis such as the one we per-
formed. When we included the 30 examinations that had been
originally scheduled as screening procedures but were diagnosed
during the same visit and resulted in a positive outcome in the
estimation, our actual cancer detection rate attributable to
screening was 3.8 per 1000 examinations, which is reasonable
for a population in which the majority of women had undergone
several screening procedures prior to the study period (/9).

On the basis of published performance levels of other
computer-aided detection systems (25), we believe that our
results are not unique to the specific computer-aided detection
system that is used at our institution. It is possible, however, that
in clinical practices with substantially lower recall rates than
ours, computer-aided detection would have larger effects on
mammography recall rates and detection rates than what we
observed. Such an improvement in detection rates would be
consistent with results of a study (/7) that reported lower recall
rates without computer-aided detection (8.02%) than with
computer-aided detection (8.43%).

The financial implications of our findings are beyond the
scope of this work. However, a simple assessment of the
additional estimated cost of using computer-aided detection
per additional cancer detected in our practice (approximately
$150 000 per additional detected cancer, assuming a reim-
bursement rate of $10 per case for professional and technical
components combined) clearly indicates that more rigorous
evaluations of the cost effectiveness of this practice are needed.

Our observations with respect to recall and detection rates
may be exceptions (stemming from large inter-practice varia-
tions) that highlight the need for additional recall and detection
rate data from multiple clinical practices and different reading
environments. However, until such data clearly demonstrate that
our experience is indeed an exception, these results represent an
important first step.

This analysis of our practice was designed to assess the
changes, if any, that occurred in recall and breast cancer detec-
tion rates with the introduction of computer-aided detection. Our
results suggest that, in our practice, neither recall rates nor breast
cancer detection rates changed with the introduction of this
technology at its current level of performance, particularly as
related to the detection of abnormalities other than clustered
microcalcifications. Due to large confidence intervals, our re-
sults are statistically consistent with the possibility of large
improvements in cancer detection rates with computer-aided
detection. Yet, actually observed changes in our practice were
substantially lower than expected. This is not to say that the use
of computer-aided detection would not be beneficial or cost-
effective in other practices. Rather, we suggest that, at its current
level of performance, computer-aided detection may not im-
prove mammography recall or breast cancer detection rates
(especially as related to the detection of masses) in academic
practices similar to ours that employ specialists for interpreting
screening mammograms.
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